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CHAPTER 1 

Background 

Introduction 

The topic of this dissertation is brain ischemia and reperfusion (I/R) injury.  Brain I/R 

manifests clinically as stroke and cardiac arrest and resuscitation (CA/R).  The clinical relevance 

of brain I/R injury is significant, affecting millions of individuals each year and costing billions 

of dollars worldwide in healthcare costs and lost productivity.  However, the underlying causes 

of neuronal death are still unknown.  To date, there are no effective clinical treatments to halt 

morbidity and mortality following brain ischemia.  This work investigates novel mechanisms of 

I/R injury in the hope of contributing to the development of effective therapies against this 

devastating disease. 

This work focuses specifically on the inhibition of protein synthesis (or translation arrest, 

TA) in neurons following global brain I/R.  I do so because the inhibition of protein synthesis in 

neurons is one of the most reliable predictors of outcome: recovery of protein synthesis indicates 

survival; lack of recovery of neuronal protein synthesis always accompanies neuronal death.  In 

spite of being a well-studied aspect of brain I/R injury, the exact mechanism of TA is unknown 

and thus, so is the link between TA and neuronal death.  In this chapter, I discuss existing studies 

of TA following brain I/R in the context of advances in the molecular biology of protein 

synthesis.  These include: (1) phenomenological relationship of TA to cell death, (2) studies of 

initiation factors and TA and (3) TA and stress responses.  These investigations however, 

provide an incomplete understanding of the process.  Important questions remain regarding the 

mechanisms and role of TA in the post-ischemic response. 

Data collected from our lab, as well as others in the field, indicates that post-ischemic TA 

may be a marker of the genetic reprogramming of post-ischemic neurons to a stress response 
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phenotype dedicated to exclusive translation of stress-induced mRNAs.  Based on the current 

understanding of the molecular biology of translation regulation, I present a novel hypothesis of 

post-ischemic TA that involves the regulation of mRNA, or ribonomics, in the control of protein 

synthesis.  In subsequent chapters, I present data showing persistent inhibition of protein 

synthesis, in vulnerable post-ischemic neurons, is due to a ribonomic mechanism.  This 

dissertation is therefore significant for solving the problem of why protein synthesis remains 

inhibited in a prolonged fashion in post-ischemic neurons destined to die. 

Brain Ischemia and Reperfusion 

Ischemia is the pathological reduction or cessation of blood flow to a tissue.  Reperfusion 

is the restoration of blood.  Specific forms of cell damage are induced by either ischemia or 

reperfusion as discussed below.  This damage differentially affects various neuronal types where 

some are able to recover and others die.  

There are two types of brain ischemia: focal and global.  Focal ischemia involves a 

circumscribed area of the brain, whereas global ischemia involves the entire brain.  Both forms 

of ischemia negatively affect brain structure and function ranging from serious brain damage to 

mortality. 

Focal Brain Ischemia 

The most important clinical manifestation of focal brain ischemia is stroke.  Also known 

as cerebrovascular accident or CVA, stroke is the leading cause of adult disability and the third 

cause of death worldwide following heart disease and cancer.  Ischemic stroke occurs when the 

blood supply to an isolated area of the brain is restricted or eliminated.  Focal ischemic injury 

consists of a core region of dead cells surrounded by a zone of hypoperfused cells called the 

penumbra region (Muir et al., 2006).  The core is closest to the occluded vessel; consequently, 

this will result in death of all cells in that region.  The cells defining the penumbra die hours to 
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days after the initial insult.  Neuronal death of the penumbra that occurs in a delayed fashion, 

following ischemia, is referred to as delayed neuronal death (DND).   

Global Brain Ischemia 

Global ischemia involves cessation of blood flow to the entire brain.  Clinically, global 

ischemia manifests during cardiac arrest (CAr).  CAr occurs when the mechanical activity of the 

heart ceases and is commonly confirmed by the absence of circulation (Roger et al., 2011).  In 

cases in which life saving maneuvers are administered through techniques like cardiopulmonary 

resuscitation (CPR), defibrillation and/or administration of various pharmacologic agents, these 

acts of resuscitation, if successful, reintroduce brain blood flow (this process of reperfusion is 

further discussed below).   

The anatomy of damage after global ischemia is different from that of focal ischemia.  

For example, the pattern or morphological alterations of brain damage in global ischemia are 

highly dependent on time.  Less than 4 minutes (min) of ischemia results in no obvious brain 

damage.  With 30 min or more of global ischemia, widespread necrosis results in brain death.  

Within the window of approximately 4 to 30 min, a gradation of ischemic impact occurs within 

specific neuronal populations (Hossmann and Kleihues, 1973; White et al., 1985).  Neurons most 

vulnerable are those of the Cornu Ammonis 1 (CA1) layer of the hippocampus, followed by 

layers III and V of the cerebral cortex, cerebellar Purkinje cells, thalamic and striatal regions 

(Jenkins et al., 1981; White et al., 1993).  Selectively vulnerable neurons die by DND between 

24-72 hours (hr) following reperfusion, whereas glia and vascular cells survive (Kirino, 1982). 

The mechanisms underlying DND are unknown.  Some investigators have associated 

DND with apoptosis (Nitatori et al., 1995), but if this were true, then apoptosis inhibitors would 

prevent DND, which they do not (Deshpande et al., 1992; Gillardon et al., 1999).  The nature of 

DND is considerably more complex than classical apoptosis (MacManus and Buchan, 2000).  
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The present dissertation will investigate mechanisms involving TA believed to play a critical role 

in DND. 

Clinical Significance of Global Brain Ischemia 

 Sudden CAr is the leading cause of death for 

adults forty years and older (American Heart 

Association, 2009; Roger et al., 2011).  It is estimated 

that roughly 250,000 Americans die every year from CAr 

(Forcina et al., 2009).  Figure 1 reflects the number of 

fatalities contributed by house fire, prostate cancer, 

breast cancer and automobile accidents; the sum of these 

contributes only half of the total lives lost to CAr each 

year (Temecula, 2009). 

The rate of patient survival after an in-hospital CA/R is 27% in children and 18% in 

adults (Lloyd-Jones et al., 2009).  Those individuals resuscitated following CAr, who are not 

diagnosed brain dead, often suffer serious brain damage.  The extent of damage correlates with 

the duration of ischemic insult.  In an observational cohort study, of the 1700 adults diagnosed 

with primary CAr, only 1.4% of those individuals had intact neurologic faculties (Eckstein et al., 

2005).  Roughly, 70,000 patients a year survive from CAr through life saving resuscitation 

technologies.  Of these, only 3-10% maintains their quality of life.  A staggering 60% die in the 

hospital, as a consequence of brain damage.  The remaining individuals require some form of 

assistance to maintain a standard quality of life (Lloyd-Jones et al., 2009). 

Established Mechanisms Underlying Brain Ischemia/Reperfusion Injury 

Since no effective clinical therapies exist to halt DND, this suggests our understanding of 

the process is not fully known.  However, many injury mechanisms have been identified and 

Figure 1.  Common causes of death 
in the U.S. From the Temecula, CAr 
website. Used under the Fair Use in 
Copyright Law (Temecula, 2009). 
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Figure 2. Overview of ischemic cascade. 
(Lyden and Wahlgren, 2000). 

collectively are referred to as the “ischemic 

cascade”, represented in Figure 2 (Lyden and 

Wahlgren, 2000).  Brain damage following I/R 

results from:  (1) damage that is initiated during 

the ischemic period and (2) damage initiated 

during reperfusion (each is discussed in turn). 

Overview of Ischemic Injury 

Ischemic injury begins when levels of 

glucose and oxygen dramatically decrease 

following loss of blood to the brain.  The immediate consequence is a depletion of adenosine 

triphosphate (ATP).  The loss of ATP occurs rapidly with a 50% decrease in the first min of 

ischemia and complete depletion by 4 min (Krause et al., 1988).  This in turn activates a cascade 

of events, with the loss of ATP inhibiting all ATP dependent processes within the brain.  The 

primary response of ATP loss is the inhibition of Na+-K+ ATPase.  This pump functions to 

regulate electrochemical gradients and membrane potentials that are crucial for promoting 

optimal neuronal function.  Without the activity of the Na+-K+ ATPase, Na+ and K+ begin to 

equilibrate and the required ion gradients needed to maintain homeostasis are lost.  This effect 

triggers the loss of the Na+ gradient; further affecting other processes that are dependent upon 

Na+, such as glucose and amino acid transport.  Perhaps most important, the Ca2+ gradient, also 

begins to dissipate.  The result of ion equilibration across the membrane is an overall net 

depolarization that causes release of neurotransmitters and further stimulates depolarization of 

the cell (Simon et al., 1984).  The consequence of these events produces a state of excitotoxicity. 

Excitotoxicity 

In normal situations, release of glutamate from presynaptic neurons binds to NMDA (N-
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methyl-D-asparate) and AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid) 

receptors on postsynaptic neurons (Sattler and Tymianski, 2001).  Binding of these receptors 

causes rapid influx of Na+ and Ca2+ via receptor operated ion channels, which in turn, causes 

depolarization (Xie et al., 1995).  Depolarization further induces Ca2+ influx through voltage 

gated Ca2+ channels as well as the release of Ca2+ from intracellular compartments (Lipton, 

1999).  Increases in intracellular Ca2+ causes further neurotransmitter release thus perpetuating 

the cycle.   

During ischemia, this highly regulated system is forced into an uncontrolled state.  

Without ATP-dependent mechanisms to reset the cell back to normal, excitotoxicity continues 

until either reperfusion reintroduces necessary metabolic demands, or the cell dies by bursting 

due to massive ion influx.  These factors are linked to the necrotic death of neurons during 

ischemia (Hertz, 2008).  However, with moderate ischemic durations (~10-20 min), similar to 

those seen clinically with CA/R, the ionic influx of Na+ is not great enough to burst the cell.  

Rather, it is thought that the unregulated state of intracellular Ca2+ may be one of many factors 

contributing to DND. 

Consequence of Increased Intracellular Ca2+ During Ischemia 

The Ca2+ ion plays a critical and central role in cell physiology; therefore, its intracellular 

concentration must be tightly regulated.  Some examples of Ca2+ regulated processes are:  signal 

transduction pathways, action as a second messenger, release of neurotransmitters, participation 

in enzymatic activity, calcium-induced calcium release, and contribution to membrane potentials 

across excitable membranes.  As such, multiple regulatory systems are involved in the control of 

Ca2+ in order to properly facilitate these functions (Boron, 2005).  In ischemia, Ca2+ 

concentrations are uncontrolled and without intervention, this state activates a number of 

pathological processes. 
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During ischemia, large concentration changes in Ca2+ affect both extracellular and 

intracellular compartments.  Specifically, during global ischemia, at the time of anoxic 

depolarization, extracellular levels of Ca2+ abruptly fall from normal concentrations of ~1.2 mM 

to ~0.1 mM, roughly 60-90 seconds (sec) after the start of ischemia (Siemkowicz and Hansen, 

1981; Benveniste et al., 1988; Xie et al., 1995).  It has further been shown, that Ca2+ moves into 

the intracellular space at a higher rate, increasing 70% during anoxia in the vulnerable CA1 

region of the hippocampus; as compared to 30% in ischemia resistant dentate gyrus (Kass and 

Lipton, 1986).  Large increases in intracellular levels of Ca2+ were recorded by microelectrodes 

in the CA1 and Cornu Ammonis 3 (CA3) hippocampal neurons.  Initially, small increases of 10-

30 nM were seen in the first minute of ischemia.  Within the next 2-3 min, cytosolic Ca2+ within 

CA1 hippocampal neurons raised from 90 nM to 30 μM.  These results were further verified with 

incorporation of MK801, a blocking agent that binds to NMDA receptors.  By blocking NMDA 

receptors, Ca2+ channels could not open and Ca2+ influx was inhibited (Silver and Erecińska, 

1990).  In another study using a Confocal Laser Scanning Microscope, a low affinity Ca2+ dye 

was applied to brain slices and a rapid increase in intracellular Ca2+ from 60 nM to 24 μM was 

detected (Grøndahl and Langmoen, 1998).  These results further substantiate the findings that 

increases in intracellular Ca2+ concentrations occur during ischemia. 

With these dramatic changes in Ca2+, normal homeostatic regulation and the functions 

associated with Ca2+, are drastically altered causing deleterious effects to the cell.  One example, 

is represented by a family of Ca2+-activated intracellular cysteine proteases called calpains.  

There are two main classes of calpains that have been isolated in protein form:  μ-calpain 

(micromolar Ca2+- requiring) and m-calpain (millimolar Ca2+- requiring) (Saido et al., 1994).  

Calpains are located exclusively within the intracellular compartment and seem to associate with 

subcellular organelles such as the cytoskeleton, vesicles and the plasma membrane (Goll et al., 
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2003).  Mechanisms for the activation of calpain have not been clearly established, however 

initial activation of μ- and m- calpain (10μM and 1mM, respectively) have shown to be 

associated with high concentrations of Ca2+ (Lipton, 1999).  Localization of calpain has been 

found in neuronal populations that have selective vulnerability.  μ-calpain has been found to be 

distributed throughout the neuron including spines, dendrites, cell somata and axons (Perlmutter 

et al., 1988; Rami, 2003).  Within the rabbit, μ-calpain was found in the pyramidal neurons, 

whereas m-calpain, which is far less sensitive, was localized within interneurons, which are 

known typically for showing greater resistance to ischemic damage (Fukuda et al., 1990).  

Additionally, calpain activity increases in neurons during both global and focal ischemia 

(Neumar et al., 2001).  Important substrates of calpain include eIF-4G and eIF4E (Neumar et al., 

1998; DeGracia, 2004) which are two examples of eukaryotic initiation factors (eIFs) that are 

important for translation (discussed in detail below).   

Increased intracellular Ca2+ is also involved in the activation of phospholipase A2 (PLA2) 

(Sun et al., 2004).  Phospholipases are enzymes that release fatty acids and are involved in cell 

signaling processes (Dennis, 1994).  PLA2 is involved in the conversion of free fatty acids either 

into arachidonic acid, a proinflammatory mediator, or in the reincorporation of fatty acids into 

the plasma membrane (Cummings et al., 2000).  In the unregulated environment caused by 

ischemia, PLA2 leads to increased production of proinflammatory mediators through which 

arachidonic acid is converted into leukotrienes or prostaglandins (Murakami et al., 1997).  

Cyclooxygenase-2 or COX-2 is the enzyme responsible for arachidonic acid conversion 

(Cummings et al., 2000) into prostanoids, a well-known biochemical event associated with 

cerebral ischemia, edema and other central nervous system (CNS) disorders (Sairanen et al., 

1998).  Sairanen et al. (1998) found that initial responses of COX-2 following focal ischemia 

were predominantly in neurons at the site of the core.  This localization correlates with the idea 
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that production of prostanoids and free radicals aggravate tissue injury during cerebral ischemia.  

This suggests that the proinflammatory responses of COX-2, in addition to other deleterious 

effects previously mentioned, contribute to excitotoxicity. 

Other factors associated with abnormal increases in intracellular Ca2+ concentration 

include kinases, such as protein kinase C (PKC) and Ca2+-calmodulin kinase II (CamKII) 

(Matsumoto et al., 2004).  The altered regulatory state of these systems upsets the integrity of 

neuronal signaling.  Consequently, there is an overproduction of neuronal nitric oxide synthase 

resulting in overproduction of nitric oxide (NO) (Beckman et al., 1990).  Finally, increased 

concentration levels of Ca2+, up regulates deoxyribonucleic acid (DNA) degradation through 

activation of DNA endonucleases (McCabe et al., 1992). 

Each of the affects listed above share a similar quality; altered Ca2+ regulation resulted in 

their initial activation.  Currently, we have a better understanding on the effects of altered Ca2+ 

regulation in neurons; following ischemia, Ca2+ regulation depends largely on duration of 

ischemia followed by subsequent reperfusion.  In cases in which ischemia durations are shorter, 

followed subsequently by reperfusion, Ca2+ levels have been shown to return to resting levels.  

Yet, selectively vulnerable neurons still go on to die by 48-72 hr (Silver and Erecińska, 1992) .  

This work, along with the many others involved in studying the mechanisms of the ischemic 

cascade, all provided significant contributions regarding the fate of the cell.  However, it still did 

not explain DND of selective neurons following reperfusion.  I now turn to details related to 

reperfusion injury. 

Overview of Reperfusion Injury   

Upon the return of blood flow following ischemia (reperfusion), blood enters a massively 

altered system that further compounds the ischemic damage.  Following reperfusion, there is an 

initial increase in blood flow (hyperemia) that is due to the buildup of vasodilating metabolites.  
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ATP levels recover relatively rapidly, within the first 10 min.  Recovery of ~70-80% occurs 

throughout the reperfusion period (Pulsinelli and Duffy, 1983; Cardell et al., 1991).  With the 

increase in ATP, ion gradients are re-established by 20 min of reperfusion (Hoehner et al., 1987).  

However, a hypoperfusion occurs within ~60 min of reperfusion (Krause et al., 1988).  At this 

point the metabolic demand of the brain is very high, and the actual metabolic rate is depressed 

roughly 50% or more for at least 6 hr after ischemia (Mies et al., 1990).  This reflects an 

uncoupling of blood flow with the metabolic need of the brain during reperfusion.  Although 

(Mies et al., 1990) were able to show long lasting regional disturbances in regional flow and 

metabolism coupling, they were not able to establish a relationship between these differences and 

post-ischemic hypoperfusion.  Thus this reveals that DND is not a consequence of hypoperfusion 

mediated through secondary tissue hypoxia. 

Following the post-ischemic response, further damage ensues during reperfusion that 

compounds the initial injuries, originally fostered by ischemia.  Damages associated with 

reperfusion injury include reactive oxygen species, lipid peroxidation, further altercations in cell 

signaling pathways and persistent TA. 

Reactive Oxygen Species  

Following reperfusion there is a large burst of free radical production with the rerelease 

of oxygen.  Reintroducing oxygen in the presence of xanthine oxidase and cyclooxygenase 

produces free radicals or reactive oxygen species (ROS) (McCord, 1993).  Formation of ROS 

produces numerous consequences that are detrimental to the cell. 

As previously mentioned, an increase in intracellular Ca2+ concentration triggers the 

increase in arachidonic acid.  As seen in Figure 3, cyclooxygenase catalyzes arachidonic acid 

producing prostaglandin G (Ulrich et al., 2006).  Prostaglandin G is peroxidized further, 

producing a free radical and prostaglandin H (Krause et al., 1988).  This results in the oxidative 
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degradation of plasma membranes whereby free radicals 

strip electrons from membrane phospholipids.  This process 

of lipid peroxidation causes drastic changes to both the 

permeability and fluidity of the plasma membrane (Farber, 

1982).  These effects alter fatty acid side chains causing 

cross-linking, in addition to polymerization of membrane 

lipids and proteins (Freeman and Crapo, 1982).  Lipid 

peroxidation has also been shown to inhibit Na+-K+ ATPase 

(Demopoulos et al., 1980).  In the CA/R model (15 min 

ischemia, 4 and 8 min reperfusion), there was an inability to 

regulate Na+, K+, and Ca2+ across cellular membranes.  This 

effect was thought to be attributed to lipid peroxidation 

(Hoehner et al., 1987).   

While there seems to be a strong association between ROS formation and lipid 

peroxidation evoking cell death, experimental evidence has altered this concept.  NB-104 cells 

were given anti-radical strategies along with arachidonate or a lipid peroxidizing promoting 

agent (CumOOH).  In control studies, both arachidonate and CumOOH induced similar forms of 

cell death in NB-104 cells, but with anti-radicals, only arachidonate was able to induce cell death 

(O’Neil et al., 1999).  These results indicate arachidonate has effects, not involving radicals, 

which provide an alternate pathway leading to cell death.  Thus, this indicates ROS are not the 

sole contributing factor, but rather part of a larger cell death response system. 

Translation Arrest During Reperfusion 

(Kleihues and Hossmann, 1971) first discovered inhibition in protein translation during 

reperfusion.  Through a series of experiments they were able to show: (1) a decrease of 

Figure 3. Role of COX enzymes 
in the formation of prostanoids.
(Ulrich et al., 2006) 
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incorporated radioactive leucine in an in vitro translation reaction using 30 min reperfused brain 

homogenates compared to controls and (2) during reperfusion a dissaggregation of polysomes 

both visually using an electron microscope (EM) and biochemically through running polysome 

profiles using a sucrose density gradient.   

From this work, Kleihaus and Hossman were able to demonstrate that during ischemia, 

ribosomes remained attached to messenger ribonucleic acid (mRNA) with no evidence of 

increased monomeric subunits.  This contributed to the idea that during ischemia there is a 

complete breakdown of energy producing metabolism, one consequence of which is to “freeze” 

polyribosomes.  Thus, there is a halt in protein synthesis, by which both initiation and elongation 

are in an arrested state during ischemia.  Following reperfusion, the number of polyribosomes 

began to decrease significantly.  This observation suggested that inhibition of protein synthesis 

during reperfusion could be attributed to the inhibition of translation initiation (Kleihues and 

Hossmann, 1971). 

Following this initial study, many labs 

confirmed these findings and characterized the fact 

that protein synthesis is inhibited in the brain for 

several hours following reperfusion.  A very 

important discovery was made at this stage; specific 

brain regions survive and recover from TA, whereas 

vulnerable brain regions do not recover from TA 

and invariably die by DND (Hossmann, 1993).  This 

event is represented in Figure 4,  in which 

autoradiographs of in vivo protein translation was 

taken in gerbils following global brain I/R.   

Figure 4. Autoradiographs of 
radioactive amino acid incorporation 
into brains of reperfused animals. 
Arrows identifying failed recovery of 
translation within CA1 neurons 
(Hossmann, 1993). 
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Notice at 5 min ischemia and 45 min reperfusion there is a complete inhibition of 

translation throughout the brain.  Within 6 hr of reperfusion the vast majority of protein 

translation is recovered with the exception of the CA1 hippocampal region.  Continuing through 

24 hr of reperfusion, CA1 failed to recover translation (identified in Figure 4 by arrows) and this 

region will go on to die by 72 hr reperfusion. 

The discovery that cell death correlates with TA suggests that the mechanisms of TA play 

a causal role in cell death.  As a result, understanding the mechanisms involving this process 

became a considerable goal for many laboratories including our own.  To better understand the 

results and knowledge acquired thus far, it is first necessary to summarize information regarding 

the process of translation initiation and its regulatory elements. 

Protein Translation   

Protein translation is  comprised of three stages:  initiation, elongation, and termination.  

Initiation involves a number of factors that function collectively to promote assembly of  mRNA, 

small 40S ribosomal subunit, large 60S ribosomal subunit and methionine conjugated initiator 

transfer ribonucleic acid (tRNA) (Met-tRNAi), represented in Figure 5.  Once the complex is 

produced, factors involved in elongation begin to move the ribosome along mRNA, attaching the 

appropriate amino acids as each triplet codon is read.  As the nucleotide sequence is read in the 

5’ to 3’ direction the translated polypeptide sequence elongates.  Termination proceeds once 

tRNA binds to a stop codon, signaling elongation is complete.  Along the way, chaperones are 

involved in folding proteins into their functional three dimensional conformations.  The 

remainder of this topic will focus on the initiation factors involved in translation initiation. 
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Rate-Limiting Steps of Translation Initiation 

Two rate limiting steps are involved in translation initiation (Merrick, 1990).  The first 

step involves eukaryotic initiation factor 2 (eIF2) catalyzing the delivery of the first amino acid, 

methionine (Met).  The second rate limiting step involves the eukaryotic initiation factor 4 (eIF4) 

catalyzing the delivery of mRNA to the initiation complex.  By altering the activity of eIF2, the 

cell controls the global rate of total protein synthesis.  Without eIF2, the initiator Met, is not 

delivered.  Altering the activity of eIF4, fine tunes how much mRNA and specifically, which 

mRNA will be tranlated.  Thus, the regulation of translation initiation is highly dependent on the 

activity of eIF2 and eIF4. 

Function and Regulation of eIF2 

eIF2 is a heterotrimer comprised of three subunits: alpha (α), beta (β) and gamma (γ).  

The β and γ subunits function as catalytic sites, whereas the α subunit functions as a regulatory 

component.  To begin initiation, eIF2 must first form a complex with guanosine triphosphate 

Figure 5.  Abbreviated steps in translation initiation. 
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(GTP).  Once bound to GTP, eIF2 can then bind to Met-tRNAi to form the ternary complex 

(eIF2-GTP-Met-tRNAi).  The ternary complex then binds the small ribosomal subunit (40S) to 

form the 43S pre-initiation complex (PIC).  The 43S PIC is recruited to the capped 5’ end of 

mRNA which it then partners to the eIF4F complex to form the 48S PIC.  The Met-tRNAi is 

tethered to the PIC by the GTP bound eIF2 complex.  The PIC scans the mRNA from the 5’ end 

to the 3’ end for the start codon, AUG.  Once AUG is found, scanning stops, and hydroylsis of 

GTP within the ternary complex occurs.  eIF2 is now bound to guanosine diphosphate (GDP), 

which is released along with other initiation factors.  With the loss of these factors the 48S PIC is 

available to bind with the large 60S ribosomal subunit forming the completed 80S complex.  

This step marks the end of initiation and the beginning of elongation (Merrick, 1990; Sonenberg 

and Hinnebusch, 2009).  

Previously, it was mentioned that overall rate of protein synthesis is regulated by eIF2.  

This is accomplished when the alpha subunit on eIF2 (eIF2α) becomes phosphorylated 

[eIF2α(P)] on Serine 51.  Upon phosphorylation, the alpha subunit binds eIF2B with a 150-fold 

greater affinity as compared to its unphosphorylated counterpart eIF2α (Rowlands et al., 1988).  

Thus eIF2α(P) sequesters eIF2B, inhibiting its normal role as a GEF.  Inhibition of eIF2B results 

in accumulation of eIF2-GDP which prevents ternary complex formation  and thereby renders 

ribosomes inactive by preventing delivery of Met-tRNAi.  The inability of eIF2-GTP to form is 

the cause of eIF2α becoming phosphorylated.  This phosphorylated event is responsible for 

inhibiting protein synthesis.  With a molar concentration of 5:1 between eIF2 and eIF2B 

respectively, it would only take about 20% of eIF2α(P) to cause an almost complete TA 

(Oldfield et al., 1994; Burda et al., 1994). 

In order for subsequent rounds of initiation to occur, GDP must be replaced with GTP on 

eIF2.  Consequently, a guanine nucleotide exchange factor (GEF), eIF2B functions to exchange 
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Figure 6. Diagram depicting the 
circularization of mRNA. (Sonenberg and 
Dever, 2003) 

GDP for GTP, and in so doing, recycles eIF2-GTP.  The role of eIF2B is crucial for eIF2 to 

properly function and thus resets the stage for further initiation.  The stoichiometry of eIF2 to 

eIF2B is a factor of 5:1 in most cells (Oldfield et al., 1994).  Thus for initiation to continue there 

must be an adequate quantity of eIF2B available. 

Function and Regulation of eIF4F 

eIF4F is a heterotetramer comprised of:  eIF4A, eIF4B, eIF4E and eIF4G.  As a complex, 

the function of eIF4F is to deliver mRNA to the 43S PIC.  eIF4F binds directly to the 7-methyl 

guanylate cap (m7G) at the 5’ end of mRNA via 

eIF4E.  eIF4A in conjunction with eIF4B, has 

RNA helicase activity that promotes unwinding 

the mRNA secondary structure at the 5’ 

untranslated region (UTR) in order to promote 

the ribosome to bind and scan mRNA for the 

initiation codon.  eIF4G is a large scaffolding 

protein that, in concert with other subunits on 

eIF4F, binds directly to the ribosome.  In additon, 

eIF4G also interacts with polyadenylated binding 

protein (PABP), a protein that binds with high affinity to the 3’ end of the polyadenylated (pA) 

tail of mRNA.  Thus this interaction between eIF4G and PABP (Figure 6) influences the 

circularization of mRNA (Sonenberg and Dever, 2003).  Regulating eIF4F promotes regulation 

of a variety of mRNAs that are being delivered to the ribosomes.  The main targets in alterring 

eIF4F activity focus on individually regulating eIF4E and eIF4G directly.  Table 1 reviews each 

of the eukaryotic initiation factors involved in the initiation of translation (Hellen and Sarnow, 

2001). 
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Table 1. Characteristics of translation initiation factors.   

Name  Function 

eIF1  Enables ribosomes to scan; destabilizes aberrant initiation complexes 

eIF1A Promotes binding of Met-tRNAi to 40S subunit; promotes ribosomal scanning 

eIF2  GTP-dependent binding of Met-tRNAi to 40S subunit; GTPase 

eIF2B Guanine nucleotide exchange factor for elF2 

eIF3  Ribosomal dissociation; promotes binding mRNA and Met-tRNAi to 40S  

eIF4A RNA-dependent ATPase; RNA helicase 

eIF4B Promotes RNA helicase activity of elF4A, elF4F 

eIF4E m7G cap-binding subunit 

eIF4G Binds RNA, PABP, elF4E, elF4A, elF3 

eIF4F elF4E/4A/4G heterotrimer: binds m7G caps, RNA helicase 

eIF5  Activates GTPase activity of elF2 

eIF5B Ribosomal subunit joining; GTPase 
Simplified from Hellen & Sarnow, 2001. 

 

Regulation of eIF4E 

The regulation of eIF4E occurs in at least three ways:  transcription, phosphorylation and 

binding of inhibitory proteins.  There are several forms of evidence indicating that eIF4E is 

regulated by gene transcription (Gingras et al., 1999).  There is correlational evidence linking 

overexpressed MYC cells (protooncogenes) with an increase level of eIF4E mRNA (Rosenwald 

et al., 1993b, 1993a).  Evidence linking MYC to the upregulation of eIF4E transcription was 

established by identifying two MYC binding sites in the promoter region of eIF4E (Jones et al., 

1996).  These results are interesting in that MYC is a potent regulator of cellular growth.  The 

extent of how MYC and eIF4E are involved together in regulating cellular growth are 

undetermined at this time. 

Regulation of eIF4E through phosphorylation is influenced by extracellular stimuli such 

as hormones, growth factors, and mitogens.  Each of these promote cellular growth and enhance 

protein translation rates.  Patterns of eIF4E phosphorylation occur during the G1 and S phases of 

the cell cycle that coincidentally correlate with translation activity (Fan and Penman, 1970; 

Bonneau and Sonenberg, 1987).  Notably, eIF4E becomes dephosphorylated after heat shock in 
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concordance with a decrease in the global rate of translation (Duncan and Hershey, 1989). 

There is not always a direct connection between eIF4E phosphorylation and increases in 

translation rate.  For instance, cells introduced to certain forms of stress, i.e. arsenite or 

anisomycin, actually induce increases in eIF4E phosphorylation and decreases in protein 

translation (Morley and McKendrick, 1997; Wang et al., 1998).  It may be suggested that in such 

circumstances, other factors like eIF2α(P) may be involved.  It could be possible that certain 

stress responses trigger the phosphorylation of eIF4E in order to stimulate translation of stress 

induced proteins as a compensatory mechanism. 

eIF4E is also regulated by a family of repressor proteins called eIF4E-binding proteins 

(4E-BPs).  4E-BPs do not appear to inhibit cap binding to eIF4E but rather inhibit the activity of 

eIF4E to associate with eIF4G, thus preventing formation of eIF4F complex.  4E-BP binding to 

eIF4E is highly regulated upon 4E-BP phosphorylation.  In cases when 4E-BP is phosphorylated, 

it is unable to bind to eIF4E, permitting formation of the eIF4F complex (Haghighat et al., 1995).  

However, in cases of hypophosphorylation or dephosphorylation, 4E-BP has sites available to 

bind to eIF4E, blocking the binding of eIF4G and decreasing the rate of translation.  Certain 

extracellular stimuli have been found to increase phosphorylation of 4E-BPs: hormones, growth 

factors, mitogens, cytokines and G-protein receptor agonists (Gingras et al., 1999).  In certain 

cell types, it has been shown that certain forms of heat shock can reduce phosphorylation of 4E-

BPs (Feigenblum and Schneider, 1996; Vries et al., 1997). 

Regulation of eIF4G 

Several studies have addressed phosphorylation as a mechanism involved in the 

regulation of eIF4G (Morley and Traugh, 1990, 1993; Morley and Pain, 1995).  However, the 

stimuli that induce phosphorylation, the pathways involved, the sites of phosphorylalation and 

the functional consequences are not clearly identified (Gingras et al., 1999).  There is evidence 
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that increases in phosphorylation of eIF4G correlate to increases in eIF4F complex formation.  

This suggests that phosphorylation of eIF4G is involved not only in the regulation of eIF4F 

formation, but also controlling the actual amount of complex (Bu et al., 1993). 

Picornaviruses induce proteolysis of eIF4G in order to both enhance viral translation and 

inhibit the host cell from performing normal protein synthesis.  The viral action appears to mimic 

normal physiological mechanisms of eIF4G cleavage (Svitkin et al., 2001) and thus provides 

further evidence in the characterization and regulation of eIF4G. 

Reperfusion Induced Changes in Initiation Factors 

eIF2 and eIF4 have been extensively investigated following brain I/R.  Evidence 

highlighting this body of work is provided below. 

Changes in eIF2 During Reperfusion 

The first body of molecular study of translation initiation was performed by Drs. (Hu and 

Wieloch, 1993).  This paper was the first to measure eIF2 activity following brain I/R.  In this 

study, rat brain homogenates demonstrated inhibition of ternary complex formation following 15 

min of ischemia and either 30 min or 1 hr reperfusion.  They found that adding eIF2B could 

improve ternary complex formation and concluded that eIF2B was inhibited, providing a 

mechanism of overall translation inhibition following brain I/R (Hu and Wieloch, 1993).   

However, the work done by Burda and colleagues challenged the conclusion of Hu and 

Wieloch (1993), by showing a large increase in the phosphorylation of eIF2α following brain I/R 

(Burda et al., 1994).  This also would result in decreased ternary complex formation; 

phosphorylatioon of eIF2� was not measured in the Hu and Wieloch (1993) study. 

Following these initial studies, DeGracia et al. (1996) confirmed the results of Burda et 

al. (1994), finding 30% of eIF2α was phosphorylated 90 min following reperfusion (DeGracia et 

al., 1996).  In 1997, (DeGracia et al., 1997) was the first to develop a phospho-specific antibody 
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against Serine 51 phosphorylated eIF2α.  They were able to immuno-map the distrubution of 

eIF2α(P) throughout the reperfused brain.  Their results showed eIF2α(P) in all post-ischemic 

neurons, with levels of eIF2α(P) returning to control values by 4 hr reperfusion.  (DeGracia et 

al., 1997) revealed the peak of eIF2α phosphorylation at 10 min reperfusion, with subsequent 

dephosphorylation over a time course of 6 hr returning back to basal conditions.  These results 

indicated that TA caused by eIF2(P) was a transient event that did not directly correlate with 

cell death. 

In support of this line of thinking, (García et al., 2004) found animals showed rapid 

phosphorylation of eIF2α during reperfusion, whether or not they had been subjected to ischemic 

preconditioning (IPC).  IPC is a phenomena in which an animal is exposed to a sublethal 

ischemic insult which subsequently protects it from a lethal dose of ischemia (Zhao et al., 2006).  

Since IPC does not evoke cell death, but eIF2α(P) was expressed, this would again support the 

idea that eIF2(P) is not directly related to cell death (Davis and Patel, 2003).   

Both results present a clear line of evidence that phosphorylation of eIF2α is not directly 

involved with cell death.  Instead it appears to be responsible for an acute TA located throughout 

the brain that does not correlate with cell death of any kind.  In a later section, we will further 

discuss what the acute phosphorylation of eIF2α may mean in the reperfused brain. 

Changes in eIF4 

The first evaluation of eIF4F following brain I/R showed no change in eIF4E, however 

there was evidence of eIF4G degradation (DeGracia et al., 1996).  The degradation of eIF4G was 

verified by the Burda laboratory (Martín de la Vega et al., 2001).  In additon they showed eIF4G 

degradation was highest in the CA1 region of the hippocampus.  These authors also found eIF4E 

was degraded after prolonged ischemia (30 min), but no long term change in 4E-BP 

phosphorylation occured.  (Neumar et al., 1998) showed μ-calpain or calpain I, was responsible 
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for the loss of eIF4G, which was confirmed by Garcia et al. (2004).  The latter showed that 

phosphorylation of eIF4G decreased during ischemia but rapidly renormalized during 

reperfusion. 

Interpretting the role of eIF4G is more challenging as compared to eIF2.  The function 

and regulation of eIF2 during translation is more straight-forward because it is a well understood 

system; however, the regulation of eIF4G via phosphorylation and proteolysis, is not well 

understood.  (DeGracia et al., 2002) speculated that changes in eIF4G following I/R would 

involve internal ribosome entry site (IRES)-based initiaton that occurs when eIF4G is degraded. 

IRES located on the mRNA are internal initiation sites that do not require normal cap binding in 

order to initiate protein translation (Hellen and Sarnow, 2001).  However, a study by  

(MacManus et al., 2004) ruled out this possiblity by showing that mRNAs on ribosomes 

following brain I/R are not enriched in IRES.  Clearly, the role of eIF4G in I/R is under-

determined and significant questions remain as to its role, if any, in post-ischemic neuronal 

death. 

Protein Aggregates 

Dr. Hu has presented an alternative hypothesis that he calls cotranslation aggregation, to 

explain prolonged TA following brain I/R.  It is well known that ubiquitin, a small highly 

conserved regulatory protein, is covalently bond to proteins that are “marked” for protein 

degradation or proteolysis by the proteosome (DeGracia and Hu, 2007).  If ubiquinated, proteins 

accumulate at a rate that exceeds the rate of proteosome degradation.  The result is an 

accumulation of abnormal proteins clumping together throughout the cytoplasm.  During brain 

reperfusion, free ubiquitin levels drop very rapidly with the onset of blood flow (Hu et al., 2001).  

Dr. Hu discovered that free ubiquitin declines because cell proteins are rapidly tagged with 

ubiquitin early in reperfusion, forming large clusters of ubiquitinated proteins.  He has identified 
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two types of structures that contain ubiquinated proteins in reperfused neurons.  The initial large 

clusters he calls ubiquinated protein clusters or “ubi particles;” are relatively large structures (~2 

μm) located in the cytoplasm visible under the light microscope.  These particles are found in all 

post ischemic neurons following reperfusion (Hu et al., 2000, 2001).  The second particle he 

calls protein aggregates (PAs).  These are small structures (~250 nm) found to persist in CA1 

after 24 hr reperfusion and be absent in resistant neurons.  Dr. Hu surmises that the ubi protein 

clusters transform into PAs in vulnerable neurons, but are clear from resistant neurons.   

Identification of PAs showed an accumulation of: constitutive chaperones such as 

constitutive heat shock protein 70 (HSC70); initiation factors (eIF2, eIF4E) as well as both large 

and small ribosomal subunits (Zhang et al., 2006).  These accumulations were then collected as 

cortical homogenates, subjected to 20 min global ischemia and found to produce DND (Liu et 

al., 2005).  Therefore, Dr. Hu has concluded that an irreversible sequestration of ribosomes and 

associated proteins occurs within PAs and this is what he terms cotranslational aggregation.  

Thus, loss of ribosomes and initiaiton factors in PAs can also cause prolonged TA within 

selectively vulnerable cells destined for DND.  With these findings, Dr. Hu has proposed a 

mechanism by which PAs could be involved in prolonged TA in post-ischemic CA1 neurons.  

First, I/R causes misfolded nascent peptides to accumulate during the elongation process of 

translation.  Nascent peptides can then become the target of ubiquination and clump together.  As 

nascent peptides clump, they also accumulate ribsomes and various other translational protein 

modifiers, disrupting normal ribosomal functions.  These events establish a process, which has 

been coined “cotranslational aggregation”.  This was the first alternative pathway, following 

eIF2α phosphorylation, as a potential explanation for irreversible prolonged TA of neurons, 

which later undergo DND. 

There is clear evidence to support the Hu model, however there are some weaknesses.  
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Figure 7. Diagram depicting the ribonomic 
network. (DeGracia et al., 2008) 

First, the stoichiometry suggests that only a small percent of ribosomes are trapped in PAs 

(DeGracia et al., 2007b).  Second, the pathological process of protein aggregation does not 

account for the physiological regulatory changes in translation,  either the phosphorylation of 

eIF2α, nor the degradation of eIF4G.  The ideas that will be developed in the following sections, 

will propose an alternative model that does not exclude Dr. Hu’s model, but instead incorporates 

PAs into a larger framework of regulatory sequestration of various ribonomic agents. 

Subcellular Structures Involved in mRNA Regulation 

Throughout the life cycle, mRNA molecules associate with various proteins, generating 

what is referred to as messenger ribonucleoprotein particles or mRNPs (Anderson and Kedersha, 

2006).  In cells, mRNPs can form 

relatively large structures that are often 

visualized using a light microscope.  

Figure 7 highlights a few of these 

structures, revealing an integrated 

dynamic in the flow and function of 

mRNA, from synthesis to degradation 

(DeGracia et al., 2008a).  Here I will 

describe how these subcellular 

structures are intricately involved in 

mRNA related functions.  This is 

referred to as the ribonomic network. 

Ribonomics 

The ribonomic network first described by (Tenenbaum et al., 2002), identified mRNAs as 

being a significant aspect of regulatory control.  mRNAs organized into structural and functional 
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groups provided a mechanism that could not only affect gene expression but also affect the 

control and regulation of translated proteins.  Rather than the classic linear view where DNA 

transcribes RNA and RNA translates into protein; the ribonome is represented by the fact that 

levels of proteins within the proteome do not precisely correlate with levels of mRNAs within 

the transcriptome (Keene, 2001).  This finding alone suggests that additional regulation must be 

involved.  mRNA that was once thought of as a simple, passive, transitory state between DNA 

and protein, is now thought of as a dynamic and complex regulatory unit.  The ribonome consists 

of thousands of RNA binding proteins (RBPs) along with their associated mRNAs, non-coding 

regulatory RNAs as well as associated proteins; together these are all contained in mRNPs 

(Mansfield and Keene, 2009).  The major theme of the ribonome (also referred to as post-

transcriptional RNA operon or PTRO) involves mRNPs at the center of mRNA regulatory 

processes.  The major functions of the ribonomic network include: (1) mRNA biogenesis, 

involving transcription and processing, (2) routing or transport, (3) silencing or storage, (4) 

translation and (5) degradation (DeGracia et al., 2008a).  Simply stated in a 2009 review, “it 

(referencing ribonome) is not simply a matter of controlling a single mRNA’s fate, but rather the 

intricate harmonization of groups of messages that underlie the functioning.”  This quote taken 

from (Mansfield and Keene, 2009) reflects the coordinated, highly regulated processes involved 

with mRNA.  Considered below, are the mRNPs located both inside and outside the nuclear 

compartment of the cell, intimately involved in mRNA regulation.    

Regulation of Nuclear mRNAs 

The biogenesis of mRNA is a result of nuclear DNA transcription along with subsequent 

upstream signaling pathways linked to gene transcription.  Involved in this process are mRNPs, 

positioned at various stages along the mRNA handling process.  Spliceosomes are but one 

example that excises introns and piece together exons of newly synthesized mRNAs (Valadkhan, 
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2007).  Another example, heavy nuclear ribonucleoprotein complexes (hnRNPs) are involved 

with polyadenylation, capping and transport of mRNAs from the nucleus out to the cytoplasm 

(Carpenter et al., 2006).   

Regulation of mRNAs Outside the Nucleus 

Once transcribed, mRNA is routed from the nucleus to the cytoplasm.  In some 

situations, heat shock-induced mRNAs have been shown to be transported via specific 

complexes, whereas in more common cases, general mRNA transport complexes are involved.  

Once outside the nucleus, mRNA is shuttled to any one of the various mRNPs discussed below, 

based on the various role(s) needing to be served (DeGracia et al., 2008c). 

Polysomes are one of the classic cytoplasmic structures; involved in translation, genetic 

information contained within mRNA is converted into the functional form, protein.  As one of 

the structures in the ribonomic network, polysomes are seen as an mRNP that forms and unforms 

depending on the needs of the cell (Anderson and Kedersha, 2006).  Thus, whether or not 

translation occurs, depends upon the cellular needs at a specific point in time. 

Both processing bodies and exosomes serve roles as mRNA degradation complexes.  

Within these two ribonomic structures, they may contain initiation factors, however neither 

structure contains ribosomal subunits (Anderson and Kedersha, 2006).  Processing bodies or P-

bodies serve a dual function as a site of mRNA silencing or decay (Brengues et al., 2005; 

Teixeira and Parker, 2007).  Exosomes serve solely as degradative complexes, by which mRNAs 

uncapped and deadenylated are broken down (Schwartz and Parker, 2000).   

The formation of another ribonomic complex, the embryonic lethal abnormal vision or 

ELAV/Hu granules are examples of mRNPs that follow major cell physiological changes, such 

as those seen during differentiation or under cell stress (Antic and Keene, 1998a).  Hu proteins 

are mammalian homologs of the Drosophila ELAV.  Those Hu proteins found to be ubiquitously 
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expressed are known as HuR or HuA, whereas HuB, HuC and HuD are specific to neurons 

(Burry and Smith, 2006).  Hu proteins are involved in partitioning functionally related or 

structurally organized groups of mRNA into set cohorts.  This has been thought to be important 

for the coordinated and highly regulated fate of the mRNA, in terms of targeting them for 

simultaneous translation, silencing or degradation (Keene, 2007).  The ELAV/Hu granule is a 

unique structure that offers speed and flexibility in regards to genetic reprogramming that could 

not be achieved with the same efficiency through transcriptional regulation.  The composition of 

these structures are far less characterized as compared to stress granules(discussed below), 

however Hu granules have been found to contain eIF4G, eIF4E, PABP, Hu proteins and mRNA 

(Tenenbaum et al., 2002).   

Thus far, I have presented examples of complex structures found to be intimately 

involved in the regulation of mRNA and have further substantiated the unique and dynamic 

functionality of the ribonomic network.  The last example, stress granules (SGs), has been 

studied a great deal in our own laboratory under the direction of Dr. Donald DeGracia.  Below I 

will provide a brief background on SGs, followed by the work of Dr. Foaz Kayali conducted in 

Dr. DeGracia’s laboratory. 

Stress Granules and Evoked Stress Responses 

In order to better understand the functionality of SGs, one must first understand the 

cellular environment and induced stress response mechanisms that surrounds their activitity. 

Environmental stress is a transient occurance that forces cells to adapt in order to remain viable.  

Some examples of environmental stress include: oxidative stress; heat shock; UV radiation; 

osmotic shock; endplasmic reticulum (ER) stress and viral infection.  In order for cells to combat 

the changes evoked by stress, cells must continuously modify the types of proteins they 

synthesize.  Thus, cells have evolved a wide range of post-transcriptional modifications to 
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regulate gene expression.   

One example, where this is of critical importance, is during a stress response involving 

global TA.  In such a situation, cells must set priority on the specific stressed-induced transcripts 

needed for cellullar survival.  One multifunctional protein that has been found to be an important 

translational regulator during the stress response is TIA-1 (T-cell internal antigen-1) (Kedersha 

and Anderson, 2002).  TIA-1 acts as translational silencer in the expression of TNF-α in 

macrophages.  TIA-1 can bind with high affinity to AU – rich elements (AREs) along the TNF-α 

mRNA.  By binding to the ARE sequence it diverts RNAs from polysomes to mRNPs (Dember 

et al., 1996; Gueydan et al., 1999).  In stressed environments, TIA-1 proteins exhibit an altered, 

subcellular distribution, moving from the nucleus out into the cytoplasm where they can 

accumulate at “phase-dense subcellular cites”.  These cites are SGs (Kedersha et al., 1999). 

Structures analogous to SGs were first described in heat shocked tomato cells.  These 

cells were found to express small heat shock proteins (HSP) and pA mRNAs; however HSP 

mRNAs were excluded.  mRNAs sequestered in SGs were translationally inactive, but could be 

translated upon dissociation of SGs; which correlates with initiation of protein synthesis just 

following recovery from heat stress (Nover et al., 1983).  From this initial work, it was proposed 

that SGs were sites that stored mRNA during stress and could make mRNA available for 

translation, once the initial stress was removed. 

Through a number of studies the following conclusions could be drawn in regard to 

exogenous stress: cells can shut off protein synthesis and form SGs (Harding et al., 2001).  

Initially, SGs were thought to house mRNA, thereby regulating stress induced TA directly.  

However, it now appears that the mechanisms involved in the formation of SGs are intimately 

linked to both the control and regulation of protein synthesis. 
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Stress Granule Structure and Dynamics 

One of the main techniques used to determine the compositional structure and dynamics 

of SGs was through the use of immunofluorescence 

(IF) (Kedersha et al., 2005).  This technique (shown 

in Figure 8) allows characterization of an unknown 

structure through direct visual analysis. SGs can be 

easily dectected by performing immunostaining using 

either TIA-1 or PABP antibodies.  In situ IF has also 

been used to show poly(A) mRNA within SGs 

(Kedersha and Anderson, 2002).  

It was introduced previously that the dynamics of SGs are linked to the inhibition of 

protein synthesis in a response to some form of exogenous stress.  Upon stress, TIA-1 proteins 

travel from the nucleus out to the cytoplasm, where they form SGs.  If the stress response is 

removed, SGs will continue to increase in size, but are found to decrease in number, contributing 

to the fusion of smaller SGs.  As the severity of the stress declines, the cell begins to recover and 

SGs suddenly disperse.  Thus, the formation and recession of SGs correlates with recovery of 

protein synthesis as well as the state of enduring viability expressed by the cell.  In cases in 

which cell stress exceeds a point to which SGs perpetuate, this irreversible response leads to cell 

death (Kedersha and Anderson, 2002). 

It has been shown that the presense of SGs correspond to increases in eIF2α(P) levels.  

However, treating cells with inhibitors of translational elongation (cyclohexamide), causes the 

assembly of SGs to decline despite the elevated levels of eIF2α(P).  This response suggests that 

SGs and the mRNA they contain, move in equilibrium with polysomes (Kedersha et al., 2000).  

However, agents that promote premature termination or evoke energy depletion, can cause a 

Figure 8. Heat shocked HeLa cells, 
revealing stress granules. (Kedersha 
and Anderson, 2002) 
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state in which SGs are elevated and eIF2α(P) is low (Kedersha et al., 2002).  This dynamic 

behavior of SGs appears to be maintained through the regulation of mRNA metabolism.  Thus, 

SGs are transient, cytoplasmic compartments, whose ebb and flow rests on the homestatic 

environment of the cell. 

In 1999, Anderson and Kedersha isolated some key components in understanding the 

structural make-up of SGs.  In addition to TIA-1, they showed SGs contained the 40S ribosomal 

subunit (using S6 antisera) and a number of initiation factors including eIF4E and eIF4G and 

mRNA binding factors.  Factors, which were excluded from SGs, included the large ribosomal 

subunits, stressed-induced mRNAs and eIF2 and eIF5 (Kedersha et al., 2002).  This 

classification of identity and association implied that the compartmentalization and exclusion of 

key factors (i.e. ribsomal units), made it almost impossible for protein translation to occur in the 

presence of SGs.  Thus, the line between TA and cell stress began to become more evident with 

the knowledge gained regarding SGs. 

Using the evidence gained through their work and others, Anderson and Kedersha 

developed a model that illustrates the formation of SGs.  It states that anything that promotes 

dissociation of polysomes can lead to the progressive state of TIA-1 migrating from the nucleus 

to the cytoplasm.  TIA-1 is characterized by a set of properties that make it critical for the 

formation of SGs: (1) it can bind mRNAs nonspecifically and (2) it self-aggregates.  Thus, 

Anderson and Kedersha illustrate a scenario by which TIA-1 is bound to mRNA and mRNA is 

bound within the 48S preinitiation complex.  This association of TIA-1-mRNA-48S PIC 

aggregates with other such complexes, subsequently forming SGs (Anderson and Kedersha, 

2002a). 

Over time, the knowledge of SG composition has become quite developed.  In addition to 

the initation factors and proteins previously introduced, there are a number of RNA binding 
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proteins associated with SGs such as tristetraprolin (TTP) and HuR (Anderson and Kedersha, 

2006).  For convenience and practicality, I have only introduced a few of the key proteins and 

factors associated with SGs.  At the 2006, Translational Control Meeting, held in Cold Spring 

Harbor, NY, Dr. Nancy Kedersha presented 50 known factors that were associated and identified 

with SGs.  Current data, presented by Dr. Kedersha in 2009, at a seminar held in the Physiology 

department at Wayne State University School of Medicine, revealed an even more elaborate, 

detailed categorization of SG proteins.  Thus, within a brief period of time, the characterization 

of SGs has grown rapidly.  At one time, SGs were considered static compartments that held and 

protected mRNAs during cell stress.  With more recent evidence, SGs are now characterized as 

dynamic structures, that not only protect mRNAs (and various other proteins, factors, etc.), but 

also provide the appropriate environment for the transient flux of mRNAs throughout the cell 

Stress Granules and Post-Ischemic Translation Arrest 

In 1984, Kirino et al. studied dying CA1 reperfused neurons by using EM.  They 

observed an accumulation of particles located in the cytoplasm of the dying cell that appeared as 

electron dense substances.  It was noted that these electron dense substances correlated exactly 

with hippocampal CA1 neurons that would later die following I/R (Kirino et al., 1984).  Dr. Hu 

and his laboratory propose that these particles described by Kirino et al. are the protein 

aggregates previously discussed; however those of the DeGracia laboratory, we have offered a 

different interpretation.  Following I/R, neuronal death correlates with: (1) prolonged inhibition 

of protein synthesis and (2) irreversible accumulation of cytoplasmic granules within vulnerable 

neurons (CA1).  We propose that these particles are one of the ribonomic complexes discussed 

above or a variant form of them.   

A similar hypothesis was presented by Dr. Foaz Kayali, at the time a Ph.D. student 

working in the laboratory of Dr. Donald J. DeGracia.  As presented in his published work 
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(Kayali et al., 2005), Dr. Kayali mapped out SGs using the CA/R model following 10 min global 

brain ischemia and 10 min, 90 min and 4 hr of reperfusion using double labeling IF with two SG 

markers:  S6 and TIA-1.  This was the first in vivo description of SGs in any whole animal 

model.  The results revealed a complete sequestration (colocalization) of the 40S ribosomal 

subunit (anti-S6 antibody) that was isolated within SGs (anti-TIA-1 antibody) at a time when 

levels of eIF2α(P) was dephosphorylated 80% from its peak.  These results provided a plausible 

explanation for prolonged TA and DND.  In 2006, the DeGracia laboratory immunomapped 

eIF4G following CA/R in order to further resolve key issues of eIF4G functinality and regulation 

that to date had not been resolved.  This study identified eIF4G aggregates that formed in the 

cytoplasm that were more pronounced in vulnerable CA1 neurons as compared to CA3. 

However, these studies had two main weaknesses, (1) in Kayali et al. resistant brain 

regions showed a rapid and transient increase in SGs that paralleled the phosphorylation of 

eIF2, but this did not occur in CA1 and (2) within both studies the reperfusion durations were 

limited to 4 hr using the CA/R model.  As reported earlier, cell death occurs at 72 hr reperfusion, 

by not observing the full duration of time, no definitive correlation with selective vulnerability 

could be drawn.   

Thus, it became apparent that the CA/R model was itself a limitation to the lab.  To 

alleviate this obsticle, Dr. DeGracia’s laboratory switched the global brain model to bilateral 

carotid artery occlusion plus hypotension ischemia or 2VO/HT, a model shown to cause DND in 

CA1 neurons (Smith et al., 1984).  The main advantage to using 2VO/HT is the high survival 

rate of  >85% (Smith et al., 1984), whereas the CA/R model has a low survival rate of ~25% 

(Montie et al., 2005).  Further, with 2VO/HT, animals can be reperfused for any duration of 

reperfusion;  with CA/R, animals exponentially die as a function of reperfusion duration.  CA/R 

not only affects the brain, but generates significant peripheral organ damage in the heart, lungs, 
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kidneys and GI tract (Montie et al., 2005).  As highlighted in Smith et al.(1984), 2VO/HT 

produces well-defined patterns of neuronal death based on the specific duration of ischemia 

given.  Additionally, less than 1% of animals display seizure activity following or during 

surgery; in contrast, up to 25% of animals display seizures after CA/R.  Circulation to the 

brainstem via the vertebral arteries, is preserved using the 2VO/HT; thereby maintaining 

brainstem regulation of visceral pulmonary and cardiovascular function, which means the animal 

can spontaneously breathe without a ventilator.  For these reasons, 2VO/HT is superior to CA/R 

and is the sole model used in my work to induce global forebrain ischemia. 

In a 2007 study, using the 2VO/HT model 10 min of ischemia was induced in male rats 

followed by 1, 2 and 3 days reperfusion.  IF was used to study colocalization patterns of TIA-

1/S6, ubiquitin/S6 and ubiquitin/TIA-1 in order to observe possible interactions between SGs 

and Dr. Hu’s ubi protein clusters.  The results from this study found, (1) S6 staining does not 

significantly decrease in CA1 and in fact could still be detected at 24 and 48 hr reperfusion, and 

(2) at 48 hr reperfusion, SGs colocalized with protein aggregates in vulnerable neurons 

(DeGracia et al., 2007b).   

Unexpectedly, CA/R and 2VO/HT revealed distinct differences in S6 staining patterns; 

S6 is not soley sequestered into SGs in post-ischemic CA1 neurons.  This finding altered the role 

that SGs played in the post-ischemic stress response, but it did not rule out the functional role 

SGs have in translation regulation.  Thus, this left the lab to question the role of ribonomics and 

complex structures in post-ischemic TA. 

Ribonomics and Post-Ischemic Translation Arrest 

Summary and Proposed Hypothesis 

I have reviewed and presented information that demonstrates that prolonged inhibition in 

protein synthesis arrest correlates with DND of selectively vulnerable neurons following brain 
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I/R.  I presented information showing that there is an altered state of regulation involved with 

initiation factors that occur during the stress response that promotes subcelluar 

compartmentalization of translational elements into ribonomic complexes.  I reviewed studies 

that described the mechanisms involved in post-ischemic inhibition of protein synthesis.  In spite 

of the complexity of the studies I reviwed, taken as a whole, they have not revealed why protein 

synthesis inhibition persists in vulnerable neurons such as CA1, but recovers in cells that will 

survive, such as within the CA3 region of the hippocampus.  In all post-ischemic brain regions, 

protein translation is initially inhibited by the phosphorylation of eIF2α; however, this global 

response is both acute and transient.  Regardless, the relationship between TA and DND must be: 

(1) selective for the vulnerable neurons (CA1) and not for the cells that recover from I/R (CA3) 

and (2) the response must persist through the time course leading up to vulnerable cell death.  

This, therefore leads, to my proposing the following three hypotheses for my dissertation: 

Hypothesis #1:  Prolonged translation arrest is caused by a sequestration of translational   

machinery following global brain ischemia and reperfusion.  

Hypothesis #2:  The sequestration is physiological, involving one or more ribononomic 

structures. 

Hypothesis #3:  Formation of ribonomic structures are causally linked to post-ischemic 

translation arrest. 

The above hypotheses were tested in a whole animal (male Long Evans rats) model of 

global brain I/R using in situ antibodies and mRNA staining methods, in vivo protein synthesis 

and Western blots, which are collectively presented in the following chapters.   
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CHAPTER 2 

Prolonged Translation Arrest is caused by a Sequestration of Translational Machinery  

Overview  

Hypothesis #1: Ribonomic complexes are involved in the sequestration of translational 

machinery following global brain ischemia and reperfusion. 

Rationale  

Prolonged translation arrest defines the fate of specific cell populations; vulnerable 

neurons (CA1) die by 72 hours, whereas resistant neurons (CA3) eventually return to active 

protein translation and survive.  I therefore hypothesize that sequestration of mRNA will 

correlate to TA in CA1 and CA3, at time courses out to 48 hr reperfusion. 

Experimental Overview 

Using the 2VO/HT model in male Long Evans rats, the experimental groups included 10 

mins ischemia followed by reperfusion times of: 1 hr (1hR), 8 hours (8hR), 16 hours (16hR), 36 

hours (36hR), 48 hours (48hR) and 72 hours (72hR).  The specific number of animals per 

experimental group used for a given study are listed below.  Animals were perfusion fixed and 

tissue slices prepared.  All I/R groups were compared to the nonischemic controls (NIC).  Tissue 

slices were double labeled using fluorescent in situ hybridization (FISH) to detect poly(A) 

mRNAs and immunofluorescence histochemistry (IF) at reperfusion times 1-48hR for the 

following ribosomal antigens, S6 and RPA.  Experimental groups were repeated (including the 

72hR group) and in vivo translation rates were measured by incorporation of 35S-methionine/35S-

cysteine into CA1 and CA3; phosphorylation of eIF2 was assessed by Western blot in the same 

samples.  Hypothesis 1 was tested by correlating histological mRNA distributions throughtout 

the same time courses of in vivo translation and eIF2 phosphorylation. 
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Experimental Procedures 

Materials 

Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) (sc-25778) was purchased from 

Santa Cruz Biotechnology, Inc. (Santa Cruz, CA).  Mouse monoclonal (2317) S6 ribosomal 

protein antisera was purchased from Cell Signaling Technology, Inc. (Danvers, MA.).  Ribosome 

P antigen, a marker of the 60S ribosomal subunit (RPA; HPO-0100) was purchased from 

ImmunoVision (Springdale, AR).  Antisera for phospho-specific (AHO1492) and total (AHO 

1182) eIF2α were purchased from Invitrogen (Carlsbad, CA).  Alexa FluorR 488 donkey anti-

goat IgG, Alexa FluorR 555 donkey anti-human IgG and Alexa FluorR 555 anti-mouse IgG, 

used for IF histochemistry were purchased from Molecular Probes (Eugene, OR).  Fluoro-Jade 

was purchased from Histochem, Inc. (Jefferson, AR).  All other chemicals were reagent grade. 

Animal Model 

All animal experiments were approved by the Wayne State University Animal 

Investigation Committee and were conducted following the Guide for the Care and Use of 

Laboratory Animals (National Research Council, revised 1996).  Global forebrain ischemia was 

induced in male Long Evans rats using the bilateral carotid artery (two-vessel) occlusion and 

hypovolemic hypotension (2VO/HT) model of (Smith et al., 1984). 

 All animals using the 2VO/HT model, are first anesthetized with 5% halothane.  

Anesthesia is then maintained at 2% halothane in 100% O2 using a facemask, used throughout 

the duration of the surgery.  Rectal temperature probes were used to measure body temperature.  

Based on the rectal body temperature readings, a homeostatic blanket system was used to 

maintain body temperature (37 ± 0.5o C) throughout the ischemic period, and for the first hour of 

reperfusion.  Mean arterial pressure (MAP) was monitored in real time via tail artery access.  The 

common carotids were isolated and lassoed bilaterally.  Blood gas measurements were 
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maintained at pH = 7.4 ± 0.1, pO2 = 80 mmHg and pCO2 = 35 ± 5 mmHg immediately prior to 

the initation of ischemia.  Blood was withdrawn from the femoral artery into a 10 ml syringe 

until a MAP of 50 mmHg was reached.  Following the withdrawl of blood, the common carotids 

were clamped using microaneurysm clips.  Additional blood was withdrawn to maintain a MAP 

at 40 mmHg for a 10 min duration of time to induce ischemia.  Following ischemia for 10 min, 

the microaneurysm clips were released, blood was reinfused at a rate of 5 ml/min.  All wounds 

were sutured and anesthesia and temperature control was maintained for 1 hr following the 

surgery.  All post-surgical animals were housed in a 12-hr light/dark cycle and provided food and 

water access during their reperfusion periods.  Reperfusion times for each animal was assigned 

prior to surgery.  Once animals had reached their set reperfused times, they were sacrificed and 

the brain dissected.  Tissue processing and brain dissection is further described below.   

Rats were maintained normothermic during the entire ischemia period and for the first 

hour of reperfusion.  Post-surgical animals displaying frank necrosis, weight loss > 15% initial 

body weight/day, or sustained seizure activity were excluded from the study.  Overall survival 

rate for the reperfusion groups was 75%.  Experimental groups were: sham-operated, NICs, 10 

min ischemia and reperfusion duration of 1 hr (1hrR), 8hr (8hR), 16hr (16hR), 24 hr (24hR), 36 

hr (36hR), 48 hr (48hR) and 72 hr (72hR).  For microscopy, there were 5–6 animals per each 

experimental group.  For in vivo translation and Western blotting, there were four animals per 

each experimental group.   

Perfusion Fixation/Tissue Slicing 

Rats were transcardially perfused with 250 ml of ice cold 0.9% NaCl solution at a rate of 

20.8 ml/min.  Following the NaCl solution, 300 ml of 4% paraformaldehyde (PFA) in 0.1M 

phosphate buffered saline (PBS) solution was perfused at a flow rate of 10 ml/min.  Once 

perfusion was complete, brains were excised and post-fixed by immersion in 4% PFA/0.1M 
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PBS.  The amount of time dedicated to the post-fix process was determined based on results of 

the perfusion fixation.  Therefore, post-fixed immersion ranged from 1-3 days.  Following post-

fixation, coronal slices, at widths of 50 μm, were made through the dorsal hippocampus via a 

vibratome.  The tissue was sectioned in 0.1M PBS.  Each 50 μm slice was collected and stored in 

cryostat solution at -20o C until used for staining. 

Cell Death Measurements 

Toluidine blue and Fluoro-Jade staining were performed exactly as described in 

(DeGracia et al., 2007b).   

Toluidine Blue Staining:  Once brain slices were mounted unto the slide they were 

washed 3 times in 1% PBS and air-dried overnight.  The next day, slices were dehydrated in a 

series of graded ethanol solutions, followed by incubating the tissue in 10% Toluidine 

Blue/100% ethanol for 1 hr at room temperature.  Sections were then washed in a graded ethanol 

series and 100% xylene.  Slides were complete once mounting media (Vectashield) and coverslip 

were in place.  

Fluoro-Jade Procedure:  Brain sections were mounted with gelatin, onto slides and 

allowed to dry.  Once dry, the tissue was immersed in 100% ethyl alcohol for 3 min.  This was 

followed by a 1 min immersion in 70% alcohol and a 1 min immersion in distilled water.  Slides 

were then transferred to 0.06% potassium permanganate solution for 15 min while gently 

shaking on a rotating platform.  During this period, the Fluoro-Jade solution was prepared:  

0.01% stock solution was prepared by dissolving 10 mg of Fluoro-Jade into 100 ml of distilled 

water.  The working solution (0.001% Fluoro-Jade) was prepared using 10 ml of the previously 

prepared stock Fluoro-Jade with 90 ml of 0.1% acetic acid in distilled water.  Following the 

immersion of potassium permanganate solution, slides were rinsed for 1 min in distilled water 

and then transferred to the already prepared 0.001% Fluoro-Jade staining solution, where they 
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gently agitated on the rotating platform for 30 min.  After staining, the sections were rinsed for 1 

min each in three separate distilled water washes.  Excess water was drained, slides air dried and 

were applied with mounting media and a coverslip (Schmued et al., 1997).  Fluoro-Jade slides 

were examined using excitation at 488 nm and emission at 518 nm. 

Microscopic Analysis 

Data Acquisition 

For analysis, an Apotome was used, which is similar to a laser scanning confocal 

microscope.  The Apotome focuses on a specific plane in the tissue and can acquire optical 

sections moving up or down from the original plane of focus.  The microscope is controlled via a 

computer that is programmed to acquire optical sections of consecutive focal planes marked by a 

defined distance (the software sets this distance to meet Nyquist sampling requirements).  The 

set of sequential optical sections are referred to as a z-stack.   

All slides were examined on an Axioplan 2 Imaging System (Carl Zeiss, Oberkochen, 

Germany) equipped with an ApoTome.  Excitation at 488 nm and 568 nm, and emission at 518 

nm and 600 nm are used for Alexa 488 (green) and Alexa 555 (red) respectively.  Optical 

sectioning was performed using 63X oil immersion objective to generate z-stacks. 

Data Analysis 

The qualitative descriptions can be directly observed from digital images (as previously 

shown in (Kayali et al., 2005)).  The Zeiss Axiovision software (ver 4.2) can generate both 3D 

reconstructions and 2D “cut views”.  These can then be used for further qualitative descriptions.  

The orthographic projections of the 63X z-stacks can be used to quantify the number, size and 

intensity of subcellular structures.  The orthographic projections can be used to amplify the 

signals from the individual optical sections and imported into Adobe Photoshop where the red 

and green channels are multiplied.  The results can be exported to a gray scale channel that 
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represents overlap between both red and green channels.  This overlap is referred to as the 

yellow channel (red + green =  yellow).  The yellow channels can then be exported as gray scale 

TIFF files that can be imported into BioImage Intelligent Quantifier ver 4 software (an image 

depicting each step of channel manipulation is found in Chapter 3, Figure 18).  This software is 

typically used for counting spots on 2D gels with the capacity of performing automatic spot 

detection, counting and densitometry.  This system can be used to count “spots” in the yellow 

channel.  In order to normalize the gray scale ranges for each separate image to allow for direct 

comparison of each image acquired, a standard set of 12 6X6 pixel “marker spots” that covers 

the entire gray scale range were served to normalize the ranges of each individual image.  The 

output from BioImage for each orthographic projection was contained within an Excel 

spreadsheet; its contents included:  (1) each detected “spot”, (2) its coordinates within the image, 

(3) the size or area (pixels) and (4) the density. 

Statistics 

The analysis of the yellow channels was normalized to the total number of cells in the 

image, which then produced a comparison from one image to the next.  The averages were 

normalized from the experimental groups and compared by a one-way ANOVA and post hoc test 

to determine the p values (parameters set at p< 0.05) between the individual pairs of means. 

Immunofluorescence (IF) 

Brain slices were washed for 10 min in 0.1M PBS X4.  Following the last wash, a 

preblock step including 0.1M PBS containg 0.3% Triton X-100 (PBS-Tx) was mixed in solution 

with 10% seurm (in the same species as the secondary antibody), and remained on tissue (~300μl 

is applied per tissue slice) for 25 min.  Three washes in PBS followed (10 min/wash).  Slices 

were then immersed in primary antibody (at specific concentration/antibody solution) in 1% 

serum and PBS-Tx solution, at room temperature left to rock overnight.  The following day, 
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samples were washed three times in 0.1M PBS, for 10 min each.  The secondary antibody was 

prepared in 0.1M PBS- 0.3% Tx- 10% serum and left on the tissue for 2 hr.  The final 10 min 

wash was performed with 0.1M PBS X3.  Slices are then mounted onto glass slides, sealed under 

coverslips and stored at  -20o C.   

The primary and secondary antibody concentrations are decided based on dilution series 

that are done prior to the start of immunolabeling.  This process is very similar to the steps 

involved above, used for immunolabeling.  Each new antibody is processed the same, with a 

series of dilutions tested on control and experimental animals; in order to determine the 

concentration that limits background and provides the best overall signal. 

Fluorescent in situ Hybridization (FISH) 

Double IF/FISH was performed in a two stage procedure in which the FISH procedure 

was a modification of that described in (Bessert and Skoff, 1999).  The first stage, the IF 

procedure, was performed, as described above.  The second stage, FISH, was performed under 

low light illumination or in the dark.  At the end of the IF procedure, slices were mounted on 

lysine-coated slides.  IF-stained sections were fixed in 3.6 % formaldehyde in PBS for 10 min at 

room temperature and then drained and blotted.  Prehybridization was carried out in a box 

humidified with 50% formamide/4X saline-sodium citrate (SSC) inside an incubator at 32oC for 

3 hr in prehybridization buffer (mRNAlocator In Situ Hybridization Kit, Ambion, Austin, TX).  

Slides were then incubated overnight in the same apparatus in a solution of 50 ng/ml of a 5’-

biotinylated 50-mer oligo-dT probe (Integrated DNA Technologies, Inc., Coralville, IA), 

dissolved in hybridization buffer (mRNA Locator In Situ Hybridization Kit).  The next day, all 

subsequent processing was performed at room temperature.  Slides were washed three times in 

2X SSC for 10 min and then incubated in the dark at 1:500 Alexa 488-labeled streptavidin 

(S32354, Invitrogen, Carlsbad, California) in 4X SSC/0.1% Triton X-100 for 60 min.  Slides 
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were then washed once in 4X SSC for 10 min followed by incubation in 2X SSC/0.1% Triton X-

100 containing 1:667 of biotinylated goat anti-streptavidin (BA-0500, Vector Laboratories, 

Burlingame, CA) for 60 min.  Slides were again washed once in 4X SSC for 10 min and then 

incubated in 1:667 Alexa 488-labeled streptavidin in 2X SSC/0.1% Triton X-100 for 60 min.  

Slides were then washed sequentially in 4X SSC for 10 min and 2X SSC for 10 min, and then 

coverslipped for viewing.  Pair wise stainings were performed for: poly(A) mRNA with, S6 

(1:25) and RPA (1:5000). 

In all cases, the poly(A) staining pattern obtained, by performing IF/FISH double-

labeling, was identical to that obtained by performing FISH by itself.  Validation of the 

specificity of the poly(T) probe for binding RNA was accomplished by preincubating NIC brain 

slices in 10 U/ml DNAse I (Invitrogen, Carlsbad, CA) or 10 U/ml DNAse-free RNAse (Roche 

AppliedScience, Indianapolis, IN) at 37oC, or 0.1M NaOH at 50oC, for 2 hr prior to performing 

FISH (Martone et al., 1996a).   

Validation of antisera stainings included (not shown): (1) loss of signal with omission of 

primary antisera, (2) graded loss of signal with antisera dilution, and (3) agreement with 

published descriptions of antisera staining patterns where available.  We previously validated the 

specificity of the S6 and RPA staining (Kayali et al., 2005). 

In Vivo Translation 

Measurement of in vivo protein synthesis was performed as previously described (Kumar 

et al., 2003), with n =4 animals per each experimental group.  Briefly, 1 mCi 35S-methionine/35S-

cysteine (Trans 35S-LabelTM, ICN Biomedicals, Inc., Irvine, CA) was administered IV through 

the femoral vein, 60 min prior to sacrifice.  After 60 min, brains were rapidly but carefully 

dissected on ice, and CA1, CA3 and cerebellum were further microdissected, as shown in Figure 

9 (DeGracia et al., 2007b).  Regions CA1 and CA3 were pooled bilaterally (recovered wet 
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weights of each region were between 7-10 mg) and then sonicated at 1:10 wt:vol in buffer 

containing 7 M urea, 2 M thiourea, 0.4% CHAPS (3-[(3-Cholamidopropyl)dimethylammonio]-1-

propanesulfonate), 10 mM DTT 

(dithiothreitol), 1 mM PMSF 

(phenylmethylsulfonyl fluoride), 4 g/ml 

aprotinin, 4 g/ml leupeptin, and 2 g/ml 

pepstatin A.  Thirty-five microliters of 

each homogenate were spotted onto individual Whatmann GF-A glass fiber filters that had been 

prewet in 10% trichloroacetic acid (TCA), 1.6 % unlabeled methionine and 0.4 % unlabeled 

cysteine.  Filters were incubated in this same solution for 15 min at 4°C with rocking, washed 

twice with cold 5% TCA, and sequentially dried in 100% ethanol and 100% acetone.  35S 

incorporation into TCA-precipitable material was quantified by liquid scintillation counting.  

Protein concentrations were determined in homogenate aliquots using the Folin phenol reagent 

method. 

To account for slight animal-to-animal variations of in vivo specific activity, 

incorporation, in dpm/g protein/min, for the CA1 and CA3 regions of each animal were 

normalized and expressed as a percentage of incorporation in the cerebellum.  This procedure 

was feasible because cerebellum does not undergo ischemia in the 2VO/HT model (Smith et al., 

1984).  Pilot studies showed that total in vivo incorporation in cerebellum, CA1 and CA3 were 

statistically indistinguishable in NIC rats (average of all three brain regions was 0.26 +/- 0.08 

dpm/g protein/min, ANOVA p = 0.564).  Normalized translation rates were compared amongst 

groups by ANOVA, followed by Tukey post hoc testing to show P < 0.05 compared to the NIC 

groups for each region. 

 

Figure 9. Microdissecting CA1 and CA3 of a rat 
hippocampus. 
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Western Blotting 

Fifty microgram samples of CA1, CA3 or cerebellum homogenates were run per lane on 

10% SDS-PAGE gels, electroblot transferred to nitrocellulose, and Western blotted for 

phosphospecific (1:750) or total (1:1000) eIF2 or GAPDH (1:1000) as previously described 

(Roberts et al., 2007).  Thapsigargin treated NB104 cells were used as a positive control for 

eIF2(P), as described previously (Kumar et al., 2003).  Band densitometry was quantified in 

BioImage Intelligent Quantifier (Jackson, MI), and groups compared by ANOVA and Tukey 

Post hoc with p < 0.05. 

Results 

Cell Death and Model Validation 

Figure 10 shows representative micrographs of cell staining for CA1 and CA3 over the 

reperfusion durations used in the present studies.  As per previous reports (Smith et al., 1984; Hu 

et al., 2000; Liu et al., 2005; DeGracia et al., 2007b), cell death was observed exclusively in CA1 

at 72hR after 10 min 

2VO/HT ischemia.  No 

changes in cell numbers 

were observed at 24 hR 

or 48 hR in CA1 or 

CA3.  The bottom 

panels of Figure 10 

show that Fluoro-Jade 

staining was observed 

only in 72hR CA1, 

Figure 10. Cell staining of hippocampal CA1 and CA3 following 
I/R. Toluidine blue staining of 50 μm sections through dorsal 
hippocampus as indicated (Rows 1 and 2). Fluoro-jade labeling of 
NIC and at 72 hr reperfusion (72hR) as indicated (Row 3).  Scale bar 
is 100 μm and applies to all panels.

NIC CA1 24hR CA1 48hR CA1 72hR CA1

NIC CA3 24hR CA3 48hR CA3 72hR CA3

NIC CA1 72hR CA1 NIC CA3 72hR CA3

100 m
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consistent with the loss of toluidine blue staining in this group.  This data validates that the 

2VO/HT model leads to the selective vulnerability of CA1 pyramidal neurons. 

In Vivo Translation 

Figure 11A shows results of in vivo translation measurements in microdissected CA1 and 

CA3 normalized to cerebellum.  Evaluation went only to 48 hR to avoid the possibility of cell 

death being a contributor to decreased in vivo translation rates.  Cerebellum showed no change in 

translation compared to NICs during the entire reperfusion time course.  TA was observed in 

both CA1 and CA3 with early reperfusion.  However, translation gradually recovered in 

reperfused CA3.  At 36hR and 48hR, translation in CA3 averaged ~80% of NICs, although 

statistically indistinguishable from NICs.  In CA1, there was a recovery to about 35% of controls 

at 8hR, which declined after this time.  Translation in CA1 after 8hR was indistinguishable from 

the 1hR samples.  This data illustrates the well-established correlation between CA1 selective 

vulnerability (Figure 11) and persistent TA (Hossmann, 1993). 

Phosphorylation of eIF2α 

Phosphorylation of the alpha subunit of eIF2 was assessed in the same samples used for 

in vivo translation (Figure 11B).  There was no change in the levels of total eIF2 (ANOVA p = 

0.761) or GAPDH (ANOVA p = 0.586), the latter used as a normalizer (Figure 11B).  We 

observed a statistically significant ~2.3-fold increase in eIF2(P) only in CA1 and CA3 in the 

1hR samples (Figure 11C, ANOVA p = 0.021 and 0.017 for CA1 and CA3, respectively).  

Levels of eIF2(P) in cerebellum did not change (ANOVA p = 0.718).  Hence, phosphorylation 

of eIF2 would be expected to contribute to TA at 1hR, but cannot account for the persistent TA 

at reperfusion durations > 1hr. 
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Figure 11. In vivo protein synthesis and eIF2α(P) following I/R. (A) In vivo translation in NICs, 
and from 1 to 48hR expressed as a percentage of incorporation in cerebellum at each time point 
for each animal (n=4 per group, mean ± standard deviation). *Tukey post hoc P<0.05 as 
compared with respective NICs. ANOVA P for cerebellum=0.381. & indicates samples in which 
respective brain regions showed mRNA clumping in their cytoplasm. (B) Western blots of 
microdissected brain regions (50μg/lane) for eIF2α(P), total eIF2α and GAPDH, the latter used 
as a normalize. Experimental groups as indicated.  Lanes 1, 4, 7, 10, 13, 16, 19 representative 
samples of CA1. Lanes 2, 5, 8, 11, 14, 17, 20 representative samples of CA3. Lanes 3, 6, 9, 12, 
15, 18, 21 representative samples of cerebellum (CER).  Lane tg+ is thapsigargin-treated NB104 
cells, used as a positive control for eIF2α(P) as described previously (Kumar et al., 2003).  (C) 
Densitometry of eIF2α(P) Westerns normalized to GAPDH levels (n=4 per group, mean ± 
standard deviation). *Tukey post hoc P<0.05 as compared with respective NICs for CA1 and 
CA3.  ANOVA P for cerebellum=0.711. 

 

Microscope Observations 

The description of the microscopy results below occurred at 100% frequency in each 

group.  The exact number of animals in each group (in parentheses) were: NIC(six),1hR(six), 

8hR (six), 16hR (six), 36hR (five) and 48hR (five).  Here hippocampal regions CA1 and CA3 are 

compared systematically.  Throughout the course of observations made, the hippocampal hilus, 

dentate gyrus and cerebral cortex were evaluated.  Because these other brain regions: (1) did not 
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show cell death in the ischemia model, and (2) behaved identically to CA3 as described below, 

we show only CA3 results as representative of an ischemia-resistant brain region. 

FISH Detection of Poly-Adenylated mRNA 

FISH signal for poly(A) mRNA was eliminated when slices were pretreated with 10 U/ml 

RNAse or 0.1 M NaOH, but not 10U/ml DNAse, for 60 min at 37oC, prior to FISH (Figure 12), 

providing evidence that the poly(T) probe detected RNA and not DNA. 

 
Figure 13 shows poly(A) mRNA staining in CA1 and CA3 in NICs and from 1 to 48 hr 

reperfusion.  In both regions in NIC samples, the poly(A) FISH signal showed three distinct 

components: (1) a diffuse homogeneous cytoplasmic staining, (2) a punctate cytoplasmic 

staining, and (3) staining of up to a dozen relatively large (0.5-2 μm), round bodies in the 

nucleus.  These results are essentially identical to a previous report of poly(A) FISH staining of 

CA1 pyramidal neurons (Martone et al., 1996b).  The co-staining pairs we performed (see ahead) 

showed that, in the NIC group, the punctate cytoplasmic poly(A) staining colocalized with S6 

and RPA.  Each of these components has previously been shown to be components of SGs 

(Anderson and Kedersha, 2006).  Therefore, the punctate cytoplasmic poly(A) staining 

Figure 12. Validation of FISH. Fluorescence 
photomicrographs of NIC CA1 following 
treatments as indicated in labels. Probe for 
detecting poly(A) mRNAs was a biotinylated 
50-mer poly-thymidine (poly T) probe. 
Treatment with 10 U RNAse A/ml or 0.1 M 
NaOH ablated poly(A) signal, but not treatment 
with 10U/ml DNAse I.  Scale bar, 10 μm, 
applies to all panels. 
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represented SGs, supporting our previous observations of SGs in neurons of the normal brain 

(Kayali et al., 2005; DeGracia et al., 2006, 2007). 

Figure 13. FISH staining of poly(A) 
mRNAs. In NIC and from 1-48hR 
respectively. Fluorescent 
photomicrographs of CA1 (left 
column) and CA3 (right column) 
pyramidal layer of representative 
samples (n= 5-6 per group) from 
experimental groups as indicated. 
Images are derived from orthographic 
projections of a 3.5 μm z-stack taken 
under 63X oil immersion.  Arrows 
denote mRNA granules (see text).  
Scale bar = 20μm and applies to all 
panels. 

 

 

 

 

 

 

 

 

Following reperfusion, there was no change in the nuclear or SG poly(A) staining 

components.  However, at 1hR, the diffuse cytoplasmic staining underwent an apparently 

quantitative rearrangement in both CA1 and CA3.  There was a generalized loss of diffuse 

cytoplasmic staining and the appearance of irregular clusters of intense, concentrated poly(A) 

staining.  We designate these structures as “mRNA granules”, examples of which are marked by 

white arrows in Figure 13.  The mRNA granules were especially prominent and obvious in CA3 

neurons due to their larger cytoplasmic area.  The 8hR and 16hR samples showed essentially 
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identical staining patterns in both CA1 and CA3:  the smaller mRNA granules seen at 1hR were 

now replaced by up to several larger concentrations of poly(A) cytoplasmic staining.  After 

16hR, the poly(A) staining pattern between CA1 and CA3 significantly diverged.  At 36hR and 

48hR, the poly(A) staining returned to a diffuse pattern in CA3, resembling NICs.  However, the 

mRNA granules persisted in CA1 at 36hR and 48hR.   

We note that the presence of the mRNA granules correlated precisely with inhibition of 

in vivo protein synthesis in CA1 and CA3.  The time points in which mRNA granules were 

present were also the time points that showed in vivo translation rates statistically below controls; 

these groups are marked by an ampersand (&) in Figure 11.  This one-to-one correlation suggests 

a relationship between the mRNA granules and TA. 

S6 and Poly(A) 

In NICs of CA1 and CA3 colocalization of S6 and poly(A) caused a diffuse yellow 

cytoplasm and yellow punctate cytoplasmic staining (Figure 14, NIC).  The former likely 

represented mRNAs being translated on cytoplasmic ribosomes, the latter represented 40S 

subunits and mRNAs sequestered together in SGs (Figure 14, NIC, arrowhead). 

20 m

NIC 1hR

16hR

NIC 1hR

36hR36hR 48hR

S
6/

po
ly

(A
)

16hR

8hR

 
Figure 14. S6/poly(A) staining. S6 did not colocalize with mRNA granules during reperfusion.  
Fluorescent colors associated with each staining pair are indicated in row labels. Merged 
fluorescent photomicrographs of representative samples (n=5-6 per group) from experimental 
groups as indicated.  Orthographic projections were derived as described in legend to Figure 13.  
Scale bar = 20 μm and applies to all panels.  Arrows point to mRNA granules, arrowheads point 
to SGs. 
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During reperfusion, in CA1 from 1hR to 36hR, and in CA3 at 1hR and 8hR, the S6 did 

not colocalize with the mRNA granules (Figure 14).  At these time points, the prominent green 

mRNA granules were visible against a diffuse red S6 staining in the cytoplasm.  Colocalization 

of poly(A) and S6 in SGs were apparent (Figure 14, 16hR, arrowheads).  In CA3, at 36hR 

(Figure 14) and 48hR (not shown), the mRNA granules were no longer observed, and S6/poly(A) 

costaining reverted back to that seen in NICs. 

At 16hR in CA3 and 48hR in CA1, there was an increased yellow hue to the mRNA 

granules (Figure 14, 48hR CA1 and 16hR CA3, arrows).  However, at these time points, S6 did 

not form distinct granular structures in the cytoplasm (Figure 14, S6 channels).  To further assess 

the nature of this ostensible colocalization, linear densitometry was determined in both the red 

and green channels for CA3 at 8hR and 16hR and for CA1 at 36hR and 48hR (Figure 15).  

Densities were taken through individual mRNA granules (Figure15, between arrows) and plotted 

as a function of distance.  In mRNA granules of 8hR CA3 and 36hR CA1 neurons, the density of 

the green channel was greater than that of the red channel (Figure 15, left graphs) and the ratio of 

the green to red channel densities was greater than one (Figure 15, right graphs, black curves). 

The opposite result occurred with 16hR CA3 and 48hR CA1 (Figure 15, middle graphs and right 

graphs, blue curves).  Therefore, the apparently increased colocalization of S6 and poly(A) in the 

mRNA granules of 16hR CA3 and 48hR CA1 was not due to a concentration of S6 in the mRNA 

granules, but was due to a decrease in poly(A) staining intensity relative to S6 in the mRNA 

granules.  These calculations are consistent with the interpretation that, at 16hR in CA3 and 

48hR in CA1, the mRNA granules were beginning to dissipate. 
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Figure 15. Linear densitometry 
through mRNA granules. 
Photomicrographs of merged, 
red S6 and green poly(A) 
channels of individual CA1 & 
CA3 pyramidal neurons of 
experimental groups as 
indicated.  Arrows denote the 
start and end points for linear 
densitometry through 
individual mRNA granules. 
Relative location of arrows are 
maintained through each triplet 
of micrographs.  Left and 
middle graphs are plots of 
channel density as a function of 
distance between left and right 
arrows. Green lines are the 
green poly(A) channels and red 
lines are the red S6 channels, 
and the Y axis labels identify 
the respective experimental 
groups. Right graphs are the 
ratio of the green to the red 
channels plotted as a function 
of distance and curves are as 
designated in the insets. 

 
To get a quantitative sense of the temporal progression of S6/poly(A) double-labeling in 

both CA1 and CA3, we performed densitometry of the entire yellow channel as described 

previously (DeGracia et al., 2007a).  Densitometry results, along with representative yellow 

channels of the CA3 samples, are shown in Figure 16.  In CA1, the average density of channel 

overlap in NICs was higher than all the reperfusion groups, and the difference was close to being 

statistically significant (ANOVA p = 0.070).  In CA3, a statistically significant decrease in 

S6/poly(A) colocalization was observed in the 1hR and 8hR groups (ANOVA p = 0.015), but 

from 16hR onwards was indistinguishable from NICs.  Although they represent only an 

approximation, these results reinforce the qualitative observation that there is decreased 
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colocalization of S6 and poly(A) during the entire reperfusion time course in CA1, and during 

early reperfusion in CA3. 
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Figure 16. Semi-quantitation of colocalization.  Left, integrated density (arbitrary units) of 
colocalization of poly(A) and S6 in CA1 and CA3 (mean ± standard deviation) of experimental 
groups as indicated.  ANOVA  P was 0.070 for CA1 and 0.015 for CA3. *Post hoc P<0.05 
compared with NIC group.  Right, representative yellow channels from CA3 samples. 

 
Thus, S6 generally did not colocalize with the mRNA granules.  Additionally, there was a 

1:1 correlation between inhibited protein synthesis and the presence of the mRNA granules 

(Figures 11 & 13).  Therefore, from the data it was concluded that the mRNA granules 

sequestered mRNA away from ribosomes.  As mRNA is an essential component of protein 

synthesis, the compartmentalization of mRNA away from ribosomes provides a novel 

mechanism of prolonged TA in reperfused neurons. 

Ribosomal P and Poly(A) 

Figure 17 shows the large (60S) ribosomal subunit (Ribosomal P antigen), marked as 

RPA, double labeled with poly(A).  Only 1hR samples are shown because the qualitative pattern 

of RPA with the mRNA granules did not change over the reperfusion time course.  Additionally, 
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similar patterns were seen in cerebral cortical, thalamic and hilar neurons that evidenced mRNA 

granules following reperfusion (data not shown). 

In NICs, RPA showed a diffuse cytoplasmic colocalization with poly(A) mRNAs (Figure 

17A), as would be expected for cells active in protein synthesis.  However, the mRNA granules 

did not colocalize with RPA in reperfused samples.  Previously, the 40S marker S6, showed a 

lack of colocalization with mRNA granules following brain I/R.  As it is well-known that 

polysomes are fully dissociated at the 1hR time point (Hossmann, 1993; Martín de la Vega et al., 

2001), these results indicate that the dissociated ribosomal subunits (40S and 60S) are not 

associated with mRNA granules. 

 
Figure 17. Representative photo-micrographs of poly(A) mRNAs and Ribosomal P antigen 
(RPA), as indicated in the figure for nonischemic control (NIC) and following one hour of 
reperfusion (1hR) in hippocampal layers CA1 and CA3.  All images were acquired as described 
in Figure 13. 
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CHAPTER 3 

mRNA Granules Are a Ribonomic Structure  

Overview 

Hypothesis #2: The sequestration is physiological, involving one or more ribononomic 

structures. 

Rationale  

In Chapter 2, using IF and FISH, I identified in both CA1 and CA3 neurons, cytoplasmic 

poly(A) mRNAs redistributed from a homogenous staining pattern seen in controls to granular 

structures we termed mRNA granules.  The mRNA granules abated after 16hr reperfusion in 

CA3, but persisted in CA1 neurons out to 48 hr reperfusion.  Protein synthesis inhibition 

correlated precisely with the presence of the mRNA granules.  The mRNA granules did not 

colocalize with either small or large ribosomal subunits.  This differential compartmentalization 

of mRNA away from both the 40S and 60S subunits correlates with translation arrest in post-

ischemic neurons, thus providing a concise mechanism of persistent TA in post-ischemic CA1.  

Therefore, to test my hypothesis, and further elucidate and characterize mRNA granules, I will 

use IF/FISH to determine whether mRNA granules:  (1) associate with other known ribonomic 

complexes, (2) are localized to any particular region of the cell, by considering possible 

colocalization patterns with organelles and cytoskeletal proteins, and (3) are involved with the 

stress response.   

Experimental Overview  

Using the 2VO/HT model in male Long Evans rats, the experimental groups included 10 

mins ischemia followed by reperfusion times of: 1 hr (1hR), 8 hours (8hR), 16 hours (16hR), 36 

hours (36hR), and 48 hours (48hR).  Animals were perfusion fixed and tissue slices were 

prepared and stained for poly(A) mRNAs by FISH identically to Hypothesis #1.  Hypothesis #2 
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was tested by comparing vulnerable CA1 and resistent CA3 for colocalization of poly(A) mRNA 

with the protein antigens listed below in 

Table 2. A second set of animals were used 

to prepare unfractionated hippocampal 

homogenates for Western blot to verify 

antibody specificity, for those antibodies 

not previously used in our laboratory.  

Using TIA-1 in this experiment also 

provided an opportunity to count stress 

granules in CA1 vs CA3 at 15 mins and 1 

hr reperfusion using methods of (Kayali et 

al., 2005).   

Anti-sera for HSP-70 was used for 

IF to evaluate potential differences in stress 

response using the 2VO/HT model 

comparing CA1 and CA3.  Same experimental groups listed above, were used.   

Experimental Procedures 

Materials 

Antisera for -tubulin (T6199) and neurofilament (NF) H/M (N2912) were purchased 

from Sigma-Aldrich (St. Louis, MO).  Antisera for acidic protein rich in leucine, a HuR 

accessory protein (APRIL; ab4224 ), cytochrome C oxidase subunit 4, a mitochondrial marker 

(COX IV; ab16056) and PABP (ab21060) were purchased from Abcam (San Francisco, CA).  

Antisera for protein disulfide isomerase, a marker of the endoplasmic reticulum (PDI; MA3-019) 

and the trans-Golgi marker TGN38 (MA3-063) were purchased from Thermo Scientific 

Protein Antigens Detects

TIA‐1 Stress Granules

TTP Processing Bodies

PABP ELAV/Hu granules

eIF4G ELAV/Hu granules

HuR ELAV/Hu granules

pp32 HuR Transport Protein

April HuR Transport Protein

 ‐Tubulin Cytoskeleton

NF H/M Cytoskeleton

GM130 Golgi Complex

TGN38 Golgi Complex

COX IV Mitochondria

NeuN Nucleus

PDI

Endoplasmic 

Reticulum

Table 2. Various protein antigens and they are 
association with a ribonomic complex (stress 
granules, processing bodies or ELAV/Hu 
granules), HuR transport protein(s),
cytoskeletal protein(s) and/or organelle(s). 
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(Rockford, IL).  A marker of the cis-Golgi, GM130 (610822), was purchased from BD 

Biosciences (Sparks, MD).  HuR (sc-5261), TIA-1(sc-1751), and TTP (sc-8458) antisera were 

purchased from Santa Cruz Biotechnology, Inc (Santa Cruz, CA).  Anti-NeuN, used here as a 

marker for neuronal nuclei, (MAB377) was purchased from Millipore (Billerica, MA).  Antisera 

for pp32, another HuR accessory protein (ADI-905-234-100) was purchased from Enzo Life 

Sciences (Farmingdale, NY).  HSP-70 antiserum (SPA-820) was from Stressgen (Ann Arbor, 

MI).  Anti-eIF4G directed against a fragment corresponding to nucleotides 288-1811 of the rat 

sequence (previously described in (Kimball et al., 2003; DeGracia et al., 2006).  Alexa FluorR 

488 donkey anti-goat IgG, Alexa FluorR 555 donkey anti-rabbit IgG, Alexa FluorR 555 donkey 

anti-mouse, Alexa FluorR 555 donkey anti-goat IgG, used for IF histochemistry were purchased 

from Molecular Probes (Eugene, OR).  All other chemicals were reagent grade. 

Animal Model 

All animal experiments were approved by the Wayne State University Animal 

Investigation Committee and were conducted following the Guide for the Care and Use of 

Laboratory Animals (National Research Council, revised 2011).  All efforts were made to reduce 

animal suffering and minimize the total number of animals used.  Normothermic global forebrain 

ischemia of 10 min duration was induced in male Long Evans rats using the 2VO/HT model of 

Smith et al., (1984), as previously described.  Exclusion criteria and survival rates were as 

previously reported.  Experimental groups (n = 5/group) were: sham-operated, NICs, 10 min 

ischemia and reperfusion durations of:  15 min (15mR), 1 hr (1hR), 8 hr (8hR), 16 hr (16hR), 36 

hr (36hR) and 48 hr (48hR). 

Tissue Slice Preparation and Double IF/FISH   

At appropriate times, animals were transcardially perfused, brains dissected, and 50 μm 

slices through the dorsal hippocampus were obtained via vibratome and stored at -20oC in 
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cryostat solution until used.  IF was performed alone, using HSP-70, (1:200).  Double IF/FISH 

was performed exactly as previously described, using 50 ng/ml of a 5’-biotinylated 50-mer oligo-

dT probe (Integrated DNA Technologies, Inc., Coralville, IA).  Antisera dilutions were: -

tubulin, (1:100); APRIL, (1:100); COX IV, (1:50); eIF4G, (1:50); GM130, (1:100); HuR, (1:25);  

NeuN, (1:500); NF H/M, (1:300); PABP, (1:250); PDI, (1:200); pp32, (1:250); TGN38, (1:200); 

TIA-1, (1:150); TTP, (1:25). 

Validation of antisera stainings included (not shown): (1) loss of signal with omission of 

primary antisera, (2) graded loss of signal with antisera dilution, and (3) agreement with 

published descriptions of antisera neuronal staining patterns where available [e.g. ER and Golgi 

(Takeda et al., 2001); NeuN and α-tubulin (Gu et al., 2009); neurofilament H/M (Kim et al., 

2002); poly(A) mRNAs (Martone et al., 1996b), TTP (Stoecklin et al., 2004) and HuR homologs 

(Gao and Keene, 1996).  We previously validated the specificity of TIA-1 (Kayali et al., 2005) 

and eIF4G staining (DeGracia et al., 2006).   

Slides were examined on an Axioplan 2 Imaging System (Carl Zeiss, Oberkochen, 

Germany) equipped with an ApoTome.  Excitation at 488 nm and 568 nm, and emission at 518 

nm and 600 nm were used for Alexa 488 (green) and Alexa 555 (red), respectively.  Optical 

sectioning was performed using the 63X oil immersion objective to generate z-stacks as 

previously described.  Fluorescent micrographs shown in the figures are orthographic projections 

of 3.5 μm z-stacks (10 x 0.35 μm optical sections), unless otherwise stated. 

Semi-Quantitative Analysis of Colocalization 

For TIA-1/poly(A) double staining, SGs were counted using the “yellow channel”.  

“Yellow channels” were constructed from orthographic projections of acquired z-stacks of CA1.  

Orthographic projections were used to amplify colocalization signals.  Colocalization of paired 

antigens in discreet spots was quantified in BioImage Intelligent Quantifier.  The total number of 
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spots per image was determined and normalized to the number of cells in each image, and 

averages taken for each experimental group to give values for the “number of spots per cell”.  A 

semi-quantitative measure of the colocalization of TIA-1 with poly(A) was achieved by taking 

the integrated density of the entire yellow channel, normalized to the number of cells in each 

image to produce a value of “density per cell”.  These measurements were made using NIH 

ImageJ (Abramoff et al., 2004).  Groups (n = 5–6 per group) were compared by ANOVA 

followed by Tukey post hoc testing with statistical significance set at p < 0.05.  Below in Figure 

18, Images A-F, collectively illustrate channel manipulation through a step-by-step process.  A 

full description of channel manipulation is in Chapter 2, Data Analysis.    

TIA-1 S6

=

A B

C D E F

TIA-1 S6

==

A B

C D E F

 
Figure 18. Diagram and fluorescent images provide examples of channel manipulation.  
Multiplication of red and green color channels depicted both graphically (A) and histologically 
(B).  Multiplication of the channels gives an intersection showing only the colocalization  of 
the two channels (C) that can then be converted into a gray-scale image (D).  The image seen 
in D can then be inverted (E), the dense, dark spots can be highlighted in green (F) and 
imported into software to be counted (Kayali et al., 2005).   

 

Western Blot Validation of Antisera   

To further validate antibody specificity, Western blots were performed for each of the 

organelle and cytoskeletal antigens on either unfractionated non-ischemic brain homogenates 

(NeuN) or on the supernatant following centrifugation at 750 x g, 4oC (the remaining antisera).  

SDS-PAGE gels contained 50 µg of protein per lane, determined by Lowry assay.  Conditions 
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for each Western blot are listed in Table 3, which includes primary antisera: dilution, buffer, 

incubation time, incubation temperature, and type of membrane for electroblot transfer, (NC, 

nitrocellulose; PDVF, polydivinylflouride).  The base buffer for all primary antisera incubations 

was Tween-20 plus Tris buffered saline (TTBS).  Other than the primary antisera incubation 

conditions, Western blots were performed as previously described. 

Table 3.  Conditions for each Western blot including: antisera, dilution, primary buffer (1o 
buffer), time, temperature and membrane used. 

Antisera  Dilution  1°Buffer  Time  Temperature  Membrane 

APRIL  1:500  5% 1 hour 25° C PVDF 

‐Tubulin  1:1000  10%  1 hour  25° C  PVDF 

COX IV  1:150  5% overnight 4° C PVDF 

GM130  1:500  5% 1 hour 25° C PVDF 

NeuN  1:1000  5% overnight 4° C NC 

NF H/M  1:1000  5% overnight 4° C NC 

PDI  1:1000  2% overnight 4° C NC 

pp32  1:333  N/A overnight 4° C NC 
TGN38  1:250  5% overnight 4° C PVDF 

 

Results 

Microscope Observations 

I preface the description of the microscopy results by stating that all descriptive 

observations occurred at 100% frequency in each group.  The exact number of animals in each 

group (in parentheses) were: NIC(6), 1hR(6), 8hrR(6), 16hR(6), 36hR(5) and 48hR(5).  Here, I 

systematically compared hippocampal regions CA1 and CA3.  In the course of these 

observations, I also evaluated the hippocampal hilus and dentate gyrus as well as the cerebral 

cortex.  Because these other brain regions: (1) did not show cell death in the ischemia model, and 

(2) behaved identically to CA3 as described below, only CA3 results are used to represent all 

other ischemia-resistant brain regions mentioned above. 

Double IF/FISH 

I previously showed that 10 min of 2VO/HT forebrain ischemia, in rat caused selective 
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CA1 cell death at 3 days reperfusion and that mRNA granules were present in CA1 neurons to 

48 hR and in CA3 neurons to 16 hR.  Identical results were obtained in the present study across 

the reperfusion time course (data not shown).  For simplicity, the microscopic data will be 

presented within two groups: (1) ribonomic related antigens and (2) nonribonomic antigens 

(organelle, cytoskeletal and HuR transport antigens). 

Ribonomic Related Antigens 

The co-staining pairs (see ahead) shown within the NIC group, revealed punctate 

cytoplasmic poly(A) staining colocalized with eIF4G, TIA-1 and to a lesser extent with PABP 

and TTP, but not with HuR.  Each of these components has previously been shown to be 

components of SGs (Anderson and Kedersha, 2006).  Therefore, the punctate cytoplasmic 

poly(A) staining represented SGs, supporting our previous observations of SGs in neurons of the 

normal brain (Kayali et al., 2005; DeGracia et al., 2006, 2007). 

Colocalization was assessed by double labeling with IF and FISH, of poly(A) with the 

following mRNA binding proteins: (1) eIF4G, a subunit of the eIF4F complex that delivers 

mRNA to the 40S subunit during translation initiation (Gingras et al., 1999), (2) poly(A) binding 

protein (PABP), which binds the 3’ poly(A) tail, and contributes to a number of translation 

functions (Mangus et al., 2003), (3) TIA-1, a component of SGs (Anderson and Kedersha, 

2002b), (4) TTP, a component of P-bodies (Stoecklin et al., 2004), and (5) HuR, an mRNA 

binding protein known to stabilize adenine and uridine rich element (ARE)-containing mRNAs 

(Keene, 1999).  These costaining pairs are shown in Figures 19 and 20, in which arrows point to 

mRNA granules and arrowheads are used to point to SGs. 

eIF4G and PABP & Poly(A) 

eIF4G and PABP are described together because their staining patterns were the same 

across experimental groups (Figure 19).  In CA1 and CA3 of NICs, eIF4G and PABP staining 
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were cytoplasmic as we previously showed for eIF4G (DeGracia et al., 2006).  For both antisera, 

the cytoplasmic staining took two forms in the NICs: a diffuse staining and a punctate staining.  

Both the diffuse and the punctate cytoplasmic staining of each protein colocalized with the 

equivalent cytoplasmic staining of poly(A), producing in each case a diffuse yellow cytoplasm 

containing yellow punctate particles (Figure 19A and 19B, NIC samples).  For eIF4G the diffuse 

colocalization likely represented their binding to mRNAs undergoing translation initiation.  

PABP diffuse colocalization likely represented PABP associated with mRNAs on translating 

cytoplasmic ribosomes.  The punctate cytoplasmic staining represented colocalization with 

poly(A) mRNA in SGs (Figure 19A and 19B, arrowheads). 
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Figure 19. Ribonomic structural proteins that colocalized with mRNA granules during 
reperfusion.  Co-staining of (A)eIF4G and poly(A), and (B)PABP and poly(A). Fluorescent 
colors associated with each staining pair are indicated in row labels.  Merged fluorescent 
photomicrographs or representative samples (n= 5-6 per group) from experimental groups as 
indicated.  Orthographic projections were derived as described previously.  Scale bar = 20 μm 
and applies to all panels.  Arrows point to mRNA granules, arrowheads point to SGs. 

 
Following reperfusion, eIF4G and PABP clearly colocalized with the mRNA granules in 

both CA1 and CA3.  In each costaining pair, the mRNA granules showed an intense yellow color 

in merged images (Figure 19A and 19B, reperfused, arrows).  In all samples in which mRNA 
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granules were observed, they colocalized with eIF4G and PABP.  In the individual channels for 

eIF4G and PABP, prominent cytoplasmic granules were present, similar to those we previously 

reported for eIF4G (DeGracia et al., 2006).  At 36hR and 48hR in CA3, the costaining patterns 

for both proteins with poly(A) reverted to that seen in NICs (not shown). 

TIA-1 & Poly(A) 

The TIA-1 staining pattern obtained when costaining with poly(A) FISH was identical to 

that which we previously described (Kayali et al., 2005).  That is, TIA-1 was predominantly 

nuclear, with punctate cytoplasmic staining.  In NICS, the punctate TIA-1 staining colocalized 

with the punctate poly(A) staining (Figure 20, NIC CA1 and CA3, arrowheads), providing our 

main evidence that the punctate poly(A) staining represented SGs.  Nuclear TIA-1 staining did 

not significantly colocalize with nuclear poly(A) staining in any control or reperfused samples. 

During reperfusion, there was no colocalization of TIA-1 with the mRNA granules 

(Figure 20, reperfused, arrows), indicating that the mRNA granules were not SGs.  In fact, the 

mRNA granules (Figure 20, arrows) and SGs (Figure 20, arrowheads) were mutually visualized 

in the neurons with poly(A)/TIA-1 costaining.  The SGs formed small, circular, yellow 

colocalizations of TIA-1 and poly(A), whereas the mRNA granules were larger, irregularly 

shaped and stained only green for poly(A). 
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Figure 20. Results from TIA-1/poly(A) co-staining.  Costaining of TIA-1 and poly(A).  
Fluorescent colors are associated with staining pair, as indicated in row labels.  Merged 
fluorescent photomicrographs of representative samples (n= 5-6 per group) from experimental 
groups as indicated.  Orthographic projections were derived as described previously.  Scale bar = 
20μm and applies to each panel.  Arrows point to mRNA granules, arrowheads to SGs.   
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In order to count stress granules and compare the results using the 2VO/HT model to 

those obtained using CA/R model (Kayali et al., 2005), I used the double label IF technique, co-

staining TIA-1 and S6.  The same animal groups were used, as described above, plus one 

additional group:  10 min ischemia followed by 10 min reperfusion.  The results are found in 

Figure 21, and show at 10 mins reperfusion, in both CA1 and CA3, stress granule numbers 

increase significantly as compared to control (nucleus does not contain SGs and thus was used 

here as a normalizer).  However, at 1 hR the number of SGs decreased in both CA1 and CA3, 

and were no longer significantly different.   

These results reveal that SGs are more prolific at 10 min reperfusion as compared to any 

of the remaining reperfusion time points studied.  This also confirms that the CA/R model 

produces a more severe injury as compared to the 2VO/HT model thus explaining the variation 

in outcomes observed.     
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Figure 21.  Results from TIA-1/S6 co-staining. Top Image: Fluorescent colors are associated 
with staining pair, as indicated in row labels. Merged fluorescent photomicrographs of 
representative samples (n= 5-6 per group) from experimental groups as indicated. Orthographic 
projections were derived as described previously.  Scale bar = 10μm and applies to each panel. 
Lower Image:  Counting of SGs in CA1 vs. CA3. 
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TTP & Poly(A) 

I report here, to my knowledge, the first immunomapping of TTP in reperfused brain, and 

an assessment of its costaining with poly(A) (Figure 22A).  In NICs, the TTP staining was 

similar to that of TIA-1 in that it was predominantly nuclear, in agreement with published TTP 

staining in other cell types (Stoecklin et al., 2004).  However, in NICs, TTP did not significantly 

colocalize with the SG staining component of poly(A) (Figure 22A, NIC, arrowheads), 

suggesting it is not a major constituent of SGs in control neurons, but rather the distinct 

cytoplasmic sites known as P-bodies.   
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Figure 22. Ribonomic structural proteins that did not colocalize with mRNA granules during 
reperfusion. Costaining of: (A) TTP and poly(A); (B) TTP and TIA-1. Fluorescent colors 
associated with each staining pair are indicated in row labels. Merged fluorescent 
photomicrographs of representative samples (n= 5-6 per group) from experimental groups as 
indicated. Orthographic projections were derived as described previously. Scale bar = 20 μm and 
applies to all panels. Arrows point to mRNA granules, arrowheads point to SGs. 

In reperfused CA1 and CA3 neurons showing mRNA granules, TTP did not colocalize 

with the mRNA granules (Figure 22A, arrows).  However, in both CA1 and CA3, colocalization 

of TTP in poly(A) SGs, was observed starting at 8hR and peaking at 16hR (Figure 22A, 

reperfused, arrowheads).  Increased colocalization of TTP and poly(A) in cytoplasmic SGs 
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corresponded with a decrease in the nuclear TTP signal.  This colocalization decreased at 36hR, 

and was no longer evident at 48hR in both CA1 and CA3 (data not shown).  This data suggests 

that: (1) TTP exported from the nucleus and entered cytoplasmic SGs during reperfusion, but 

that (2) TTP interaction with cytoplasmic SGs was reversible.   

To confirm that TTP entered SGs, double-labeling IF with TIA-1 and TTP was 

performed (Figure 22B).  I observed a redistribution of TTP out of the nucleus and into TIA-1 

containing SGs in both CA1 and CA3 neurons by 16hR.  Since TTP behaved identically in CA1 

and CA3 (Figure 22A and 22B), it was determined that TTP changes did not correlate with 

selective vulnerability.  However, the redistribution of TTP that was seen here, does correspond 

with observations made by (Kedersha et al., 2005), in which following the dissociation of 

polysomes, mRNA that is released is sorted and remodeled at SGs.  From there, selected 

transcripts can be delivered from SGs to P-bodies for degradation.  This account of SG and P-

body association is consistent with my findings.    

HuR and Poly(A) 

Again, to my knowledge, this is the first investigation of HuR immunomapping, and an 

assessment of its colocalization with poly(A) mRNAs following brain reperfusion (Figure 23).  

In NICs, HuR showed a staining pattern in neurons essentially identical to that previously 

reported for its homolog HuB (Gao and Keene, 1996).  HuR was mainly localized in the nucleus, 

but did show a diffuse cytoplasmic staining that was less intense, as compared to the nuclear 

staining.  It was also noted, in the interneurons of CA1 (Figure 23, NIC, CA1, large arrow) and 

CA3 (not shown), the cytoplasmic HuR staining was much more intense than in the pyramidal 

cells.  In pyramidal neurons, the colocalization of HuR and poly(A) resulted in an “olive” 

colored cytoplasm, representing a small degree of colocalization between cytoplasmic HuR and 

the diffuse component of the poly(A) cytoplasmic signal.  Additionally, the HuR nuclear signal 
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showed “holes” within which the poly(A) nuclear staining tended to fit, almost like pieces of a 

puzzle, so there was no overlap between HuR and poly(A) nuclear staining patterns. 

Upon reperfusion, different patterns of HuR/poly(A) colocalization were obtained for the 

CA1 and CA3.  At 1hR, 8hrR and 16hR in CA1, HuR remained mainly nuclear and there was no 

colocalization with the cytoplasmic mRNA granules.  At 36hR and 48hR in CA1, HuR showed 

colocalization with the cytoplasmic mRNA granules.  In CA3, HuR colocalized with mRNA 

granules at the 1hR, 8hR and 16hR time points observed in CA3 neurons.  At 36hR and 48hR in 

CA3, the colocalization pattern reverted back to that of the NIC group.  Therefore, there was at 

least a 35 hour delay in HuR colocalizing with the mRNA granules in CA1 compared to CA3. 
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Figure 23.  IF/FISH for HuR and poly(A). In NIC and 1hR-48hR.  Merged fluorescent 
photomicrographs of CA1 and CA3 pyramidal layers of representative samples (n= 5-6 per 
group) from experimental groups as indicated.  Orthographic projections were derived as 
previously described.  Arrow points to CA1 interneuron.  Scale bar = 20μm and applies to all 
panels. 
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HSP-70 Translation 

Immunostaining for HSP70 is shown in Figure 24.  When observed, HSP70 staining was 

extremely pronounced, resulting in what had been previously described as a “Golgi-like” 

staining pattern (Simon et al., 1991), in which the entire cell body, including extensive dendritic 

branching became labeled.  In CA3, robust HSP70 staining occurred at the 8hR and 16hR  time 

Figure 24. IF photomicrographs of 
HSP-70. In CA1 and CA3 
pyramidal layer of representative 
samples (n= 5-6 per group) from 
experimental groups as indicated.  
Orthographic projections were 
derived as previously described.  
Scale bar =20 μm applies to all 
panels. 

 

 

 

 

 

 

 

 

 

 

 

 

points.  By 36hR in CA3, a much weaker HSP70 signal was obtained, confined predominantly to 

the nucleus and punctuate, cytoplasmic foci.  By 48hR, the CA3 HSP70 signal was very weak.  
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In contrast, in CA1 at 8hR, HSP70 staining was very weak.  By 24hR in CA1, staining was 

detectable but still relatively weak.  By 36hR, CA1 neurons were strongly stained with HSP70, 

which persisted at 48hR.  These results are consistent with recent quantification from our 

laboratory, of HSP70 transcription and translation by PCR and Western blot, respectively, of 

microdissected CA1 and CA3 (Figure 25).  There it showed, a similar, early translation of 

HSP70 in CA3 (by 8hR) and a much delayed translation in CA1 (seen by 30hR in that study) 

(Roberts et al., 2007).  
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Figure 25. Differences between HSP70 translation in CA3 vs. CA1. Top left is the Western blots 
of HSP70 in microdissected CA1, on the right CA3 (as labeled).  Below the Western blots, is the 
densitometry of HSP70 (for each region labeled above) normalized to GAPDH (not shown). 
Tukey post hoc p<0.05 compared with NIC, n=4 in each experimental group. Data obtained from 
Roberts et al., 2007. 

Here the results from my data indicate a one-to-one correlation; samples that showed 

HuR in the mRNA granules also showed robust translation of HSP70 protein, with the exception 

of the 1hR CA3.  In the latter case, previous studies have shown that hippocampal neurons do 

not begin synthesis of hsp70 mRNA until at least several hours into reperfusion (Vass et al., 

1988; DeGracia et al., 1993; Roberts et al., 2007)(Vass et al., 1988; Roberts et al., 2007), 

precluding synthesis of the protein at this early time point.  As hsp70 mRNA stability is 

regulated by a 3’-UTR ARE sequence (Laroia et al., 1999), the correlation between the 

colocalization of HuR in the mRNA granules and appearance of HSP70 protein in the same 

neurons is likely of functional significance. 
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Other Antigens: Organelles, Cytoskeltal and HuR Transport Proteins 

Figures 26 and 27 illustrate representative photomicrographs of double IF/FISH staining 

in NIC and 1hR CA1 and CA3.  Only 1hR samples are shown because the qualitative pattern of 

colocalization (or lack thereof) for a given antigen with the mRNA granules did not change over 

the reperfusion time course.  Additionally, similar colocalization patterns were seen in cerebral 

cortical, thalamic and hilar neurons that evidenced mRNA granules following reperfusion (data 

not shown). 

Figure 26. Representative 
photomicrographs of 
poly(A) mRNAs and 
organelle or cytoskeltal 
protein markers. Figures 
are labeled indicating 
nonischemic control 
(NIC) from one hour 
reperfusion (1hR), in 
hippocampal layers CA1 
and CA3.  All images 
were acquired under 63X 
oil immersion and are 
orthographic projections 
of ten sequential 0.35 μm 
optical slices.  Scale bar in 
lower right most panel = 
10 μm and applies to each 
image. Each image is a 
1/3rd crop from the 
original photomicrograph. 

 

 

 

 

 

 



www.manaraa.com

70 

 

Figure 26 shows double-labeling of poly(A) mRNAs and antisera detecting intracellular 

organelles.  Only the antisera for PDI showed slight colocalization with poly(A) in the NIC 

samples, as indicated by the slight yellowish hue of  the NIC cytoplasm (Figure 26A, NIC CA1 

and CA3), likely indicative of ER-localized translation.  However, at 1hR, the mRNA granules 

were distinctly green against the red PDI staining, thus the mRNA granules did not colocalize 

with ER (Figure 26A, 1hR CA1 and CA3).  Markers of cis and trans- Golgi apparatus, GM130 

and TGN38, respectively, showed no colocalization in NICs or at 1hR (Figures 26B and 1C).  A 

lack of colocalization also held for the mitochondria marker COX IV (Figure 26D), and two 

cytoskeleton components, -tubulin (Figure 26E) and NF-H/M (Figure 26F).  Thus, the mRNA 

granules did not colocalize with any of the organelle or cytoskeletal protein markers tested. 

A.  APRIL B.  pp32

C.  NeuN

 
Figure 27. Representative photomicrographs of poly(A) mRNAs and mRNA binding systems. 
Indicated in the figure, nonischemic control (NIC) and one hour of reperfusion (1hR) in 
hippocampal layers CA1 and CA3. All images were acquired under 63X oil immersion and are 
orthographic projections of ten sequential 0.35 μm optical slices.  Scale bar in lower right most 
panel = 10 μm and applies to each image. Each image is a 1/3rd crop from the original 
photomicrograph. 
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I previously showed that the mRNA binding protein HuR colocalized with mRNA 

granules in CA3 but not CA1 pyramidal neurons at 1hR.  Steitz and colleagues (Gallouzi et al., 

2003), have shown that HuR interacts with two protein ligands, APRIL and pp32, during CRM1-

dependent nucleocytoplasmic transport of HuR-bound mRNAs.  I observed no colocalization of 

APRIL (Figure 27A) or pp32 (Figure 27B) with the mRNA granules in the reperfused samples.  

Unexpectedly, the well-known neuronal nuclear marker NeuN strongly colocalized with the 

mRNA granules in both CA1 and CA3 during reperfusion (Figure 27C). 

For all of the organelle antisera, cytoskeletal markers and HuR transport proteins used 

above, Western blots on brain homogenate proteins produced single bands at the correct 

molecular weights (Figure 28). 

 

 

 

 

 

 
 

 

The results of the double labeling revealed mRNA granules:  (1) do not colocalize with 

SGs, P-bodies, or PAs, (2) do colocalize with PABP and eIF4G, and (3) do not colocalize with 

organelles (with the exception of the nuclear marker NeuN), cytoskeltal proteins or HuR 

transport proteins.  A summary of these results are found in Table 4.  First column lists the 

antigens double labeled with poly(A) using IF/FISH and the second column answers the 

question, does this antibody colocalize with mRNA granules? 

 

 

 

Figure 28. Western blots validating the
specificity of the antisera. Antisera used
was for identifying organelles, cytoskeletal
proteins and HuR transport proteins for
validation of  microscope data.  Positions
of molecular weight standards are indicated
to the left.  Abbreviations for anti-sera are 
given in Materials and Methods. 
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Table 4. Summarizes double labeling results using IF/FISH. 
  Antigen Coloc. w/poly(A)?

eIF4G YES

PABP YES

NeuN YES

TIA‐1 NO

TTP NO

α‐tubulin NO

April NO

COX IV NO

GM130 NO

NF H/M NO

PDI NO

pp32 NO

TGN38 NO  
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CHAPTER 4 

mRNA Granules Are Causally Linked to Post-Ischemic Translation Arrest 

Overview 

Hypothesis #4:  Formation of the ribonomic structures are causally linked to post-

ischemic translation arrest. 

Rationale 

A decrease in cerebral blood flow (CBF) to about 0.55 ml/g/min, or about 50% of normal 

CBF, will trigger the inhibition of neuronal protein synthesis (Hossmann, 2006).  Given the 

relationship I showed above, between inhibition of protein synthesis and the formation of the 

mRNA granules, I predicted that the mRNA granules should form at the same blood flow rates 

known to induce inhibition of protein synthesis.  To induce changes in CBF, I employed 

endothelin-1 (ET-1). 

ET-1 is one of the most potent vasoconstricting agents known.  It is a peptide produced 

by the vascular endothelium that binds the endothelin receptors, ETA and ETB (Sato et al., 1995).  

In smooth muscle, both receptors are Gq-coupled (Arai et al., 1990; Sakurai et al., 1990).  When 

activated, IP3 causes the release of ER calcium to induce smooth muscle contraction and 

vasoconstriction (Arai et al., 1990; Sakurai et al., 1990).   

It has been shown via functional magnetic resonance imaging (MRI), that ET-1 

administered intraventricularly produces dose-dependent, apparently graded, decreases in local 

CBF as shown in Figure 29 (Jamison et al., 2011). 

Another well known agent used to inhibit protein synthesis is cycloheximide (CHX). 

CHX is a glutarimide antibiotic that has been well established as an inhibitor of protein initiation 

as well as elongation (Grollman, 1966).  In fact, CHX “freezes” nascent polypeptides in place, 

thereby not releasing them from the ribosome, nor dissociating any part of the whole 
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polyribosomal structural unit (Pestka, 1971).  Therefore, if animals were treated with CHX prior 

to I/R, one would predict CHX would prevent 

polysome disaggregation, and without free mRNA, 

the mRNA granules would not form.  However, if 

CHX was given shortly after reperfusion (~10-15 

mins), during acute TA when eIF2(P) levels are the 

highest (Roberts et al., 2007), polysomes would be in 

an already dissociated state (Hossmann, 1993; 

DeGracia et al., 2008b), thus one would expect the 

post-administration of CHX to produce mRNA 

granules.    

Both CHX and ET-1, are pharmacologic agents that are recognized for their effects on 

TA, albeit through very different mechanisms.  Here, these agents were used in different 

capacities to link the mRNA granules with TA.  For ET-1, it was used to reduce CBF to TA 

threshold.  For CHX, it was to directly investigate the link between polysomal structure and 

mRNA granule formation.   

Experimental Overview 

Both CHX and ET-1, are pharmacologic agents that are recognized for their effects on 

TA, albeit through very different mechanisms.  Here, these agents were used in different 

capacities to link the mRNA granules with TA.  For ET-1, it was used to reduce CBF to TA 

threshold.  For CHX, it was to directly investigate the link between polysomal structure and 

mRNA granule formation.  

Experimental Overview 

Using a stereotaxic frame, ET-1 was administered, through intraventricular injection, in 
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Figure 29. Effect of ET-1 on 
cerebral blood flow, as measured 
by MRI. ET-1 administered 
intraventricularly in hippocampus 
(Hipp) and sensorimotor (smCx) 
cortex of the rat (Jamison et al., 
2011). 
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male Long Evans rats.  The experimental groups consisted of ET-1 administered at 100 pg, 

200pg, 400pg, or 800pg verses saline-treated controls.  The specific number of animals per 

experimental group are listed below.  Animals were sacrificed 4 hours following the ET-1 

injections.  Each animal was perfusion fixed and had tissue slices prepared, as described 

previously.  FISH was used to detect for mRNA granules.  If  the  mRNA granules form at blood 

flow rates that induce inhibition of protein synthesis, this will reinforce the functional link 

between mRNA granules and TA.  

The second group of animals were administered CHX either 15 min before or 15 min 

after global forebrain ischemia was induced in male Long Evans rats for 10 min using the 

2VO/HT model described previously.  Both the pre and post-treated CHX groups were 

reperfused for 1 hr, (1hR).  Identical groups were repeated using saline vehicle.  Animals were 

perfusion fixed and had tissue slices prepared for staining.  Tissue slices were double labeled 

using FISH to detect poly(A) mRNAs and IF to detect HuR proteins.   

Hypothesis 3 was tested by administering two mechanistically different pharmacologic 

agents to see if either could induce mRNA granules and thus provide a causal link between 

injury and mRNA granule formation. 

Experimental Procedures 

Materials 

Alexa 488-labeled streptavidin (S32354) was obtained from Invitrogen (Carlsbad, CA).  

Biotinylated goat anti-streptavidin (BA-0500) was purchased from Vector Laboratories 

(Burlingame, CA).  Alexa FluorR 555 anti-mouse IgG, used for IF histochemistry, was 

purchased from Molecular Probes (Eugene, OR).  HuR (sc-5261) antiserum was purchased from 

Santa Cruz Biotechnology, Inc. (Santa Cruz, CA).  A 5’-biotinylated 50-mer oligo-dT probe was 

made by Integrated DNA Technologies, Inc. (Coralville, IA).  Prehybridization and hybridization 



www.manaraa.com

76 

 

buffers were obtained from the mRNA locator In Situ Hybridization Kit (Ambion, Austin, TX).  

Cycloheximide and endothelin-1 were purchased from Sigma (St. Louis, MO).  All other 

chemicals were reagent grade. 

Animal Model 

ET-1 Treatment 

Male Long-Evans rats were anesthetized with ketamine and xylazine (100 and 10 mg/kg, 

respectively), heads shaved and then symmetrically fixed by ear bars, front teeth, and nosebar 

into a stereotaxic frame.  A 1-inch incision was made down the midline of the scalp and the 

exposed skull was cleared of tissue.  Coordinates for injection into the lateral ventricle were: 

posterior 20.80 mm, lateral 21.5 mm, ventral 23.8 mm, all relative to Bregma (Paxinos and 

Watson, 1998).  Bilateral holes were drilled and a 21-guage needle lowered sequentially into the 

lateral ventricles.  ET-1 or vehicle was injected 10 µl over 10 sec, and the needle left in place for 

an additional 1 min.  ET-1 treatment was randomly assigned to animals in five experimental 

groups: (i) vehicle (normal saline) only; (ii) 100 pg; (iii) 200 pg; (iv) 400 pg; and (v) 800 pg 

endothelin-1.  These injection amounts corresponded to 25, 50, 100, and 200 mM ET-1, 

respectively.  Following ET-1 injection, rats were released from the stereotaxic frame and the 

wound sealed by staples.  Animals were returned to their cages for 4 hr, at which time, they were 

perfusion fixed for tissue staining (n=3–5 per experimental group). 

Cycloheximide Treatment 

Global forebrain ischemia was induced in male Long Evans rats for 10 min using the 

2VO/HT model of Smith et al. (1984), as previously described.  Rats were maintained 

normothermic during both I/R periods.  Post-surgical animals displaying necrosis or sustained 

seizure activity were excluded from the study.  Animals were administered CHX (1.5 mg/kg I.P.) 

either 15 min before (C-pre; n = 6) or 15 min after (C-post; n = 5) the 10 min ischemia period.  
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Both the C-pre and C-post groups were reperfused for 1 hr, (1hR).  Identical groups were 

repeated using saline vehicle administration for the pretreatment (v-pre; n = 5) and post treatment 

(v-post; n = 5) groups.  The dose of CHX used here, has been shown in previous studies to be a 

protein synthesis blocker in forebrain ischemia models (Papas et al., 1992).  Animals were 

perfusion fixed as previously described. 

Tissue Staining 

For ET-1 animals, only FISH was used to detect mRNA granules.  IF/FISH was used to 

double label HuR/Poly(A) mRNAs in the animals pre and post treated with CHX.     

Data Analysis 

For blood flow measurements, multiple experimental groups were compared by analysis 

of variance followed by Tukey post hoc analysis.  For measurements of cortical neuron loss after 

ET-1 treatment, visualized by poly(A) mRNA FISH staining, estimates of percentage cell loss 

and percent of area in which cell loss occurred were performed by evaluating the entire cerebral 

cortex in the tissue slice at 10X.  Cell loss was confirmed by viewing at 40X to distinguish cell 

loss from weak staining.  The percent of damaged area and of cell loss were both compared by 

analysis of variance followed by Tukey post hoc if necessary.  The majority of results reported 

here are descriptive and based on three-dimensional reconstruction of tissue using an ApoTome-

equipped microscope as described.  Photomontages were manually constructed in Photoshop CS 

(Adobe Systems, San Jose, CA).   

For the CHX group, only the CA3 pyramidal neurons are shown because of their 

prominent formation of mRNA granules.  Therefore, all photomicrographs were collected at the 

lateral-most bend of CA3 in the dorsal hippocampus.  The same microscope field for both the 

left and right CA3 were photographed giving two images per animal.  Stacks of optically 

sectioned tissue slices were acquired under a 63X oil immersion lens, where each pixel 
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represented spatial dimensions of x = 0.1 µm, y = 0.1 µm, and z = 0.35 µm.  Acquired z stacks 

were used for the construction of maximum intensity orthographic projections in NIH Image J 

(Abramoff et al., 2004). 

Results 

ET-1 and Cerebral Blood Flow 

Figure 29 shows the result of local cerebral blood flow measurements in cerebral cortex 

and hippocampus in vehicle-treated and from 100-800 pg ET-1 (Jamison et al., 2011).  The 100 

pg dose had no effect on blood flow in either region.  A dose dependent decrease in blood flow 

was observed from 200 pg to 800 pg ET-1.  Blood flow was reduced by one third and one half 

with 200 and 400 pg ET-1, respectively, and no difference in decrease occurred between cerebral 

cortex or hippocampus.  At 800 pg ET-1, cortical blood flow was decreased 80%, and 

hippocampal blood flow was decreased 94%. 

The graded decrease in blood flow led to the hypothesis that one would observe graded 

effects in brain tissue injury following ET-1 administration.  However, results from my in situ 

studies described below indicated that the graded changes in blood flow were only apparent, and 

likely represented averages of inhomogeneous patterns of blood flow reduction. 

ET-1 Induced Cortical Damage 

Figure 30 shows coronal sections of the ET-1 injection site at -0.8 mm posterior to the 

Figure 30. Diagram depicting the coronal 
sections used for ET-1 and its coordinate sites 
for injection. Particular section identified for 
microscope analysis using poly(A) mRNA FISH. 
Arrows mark lateral and ventral injection 
coordinates. Right image shows extent of 
cerebral cortex evaluated and served as 100% for 
area measurements in Table 5. Inset: midsagittal 
section showing locations of two coronal 
sections. Images adapted from Paxinos and 
Watson (2005). pB, posterior to Bregma. 
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Bregma and the level of brain section chosen for evaluation at -3.0 mm posterior to Bregma 

containing the dorsal hippocampus.  Ventral and lateral injection coordinates are indicated by red 

arrows on the left image.  Slices were evaluated 2.2 mm posterior to the site of ET-1 injection to 

avoid damage due to the injection site.  I excluded slices showing cortical damage that had 

obviously resulted from the injection tract into the brain.  As described below, damage occurred 

heterogeneously throughout the entire area of the cerebral cortex. 

Table 5 lists averages for the total area of cerebral cortex at -3.0 mm pB, displaying 

evidence of cell damage or death following ET-1 injection, as evaluated by poly(A) mRNA 

FISH staining.  Table 5 also lists the decrease in the number of cells, expressed as a percentage 

of controls, in areas displaying cellular damage.  The criteria for designating an area as 

“damaged” included: (1) decreased density of cells, (2) altered cell morphology from controls, 

usually, but not exclusively, in the form of cell shrinkage and distortion, and (3) a significant 

decrease in cell staining compared to undamaged areas.  The values in Table 5 are only rough 

indicators of cell damage because of the heterogeneity reported below. 

Table 5. Average percent cell death and damaged cortical area, following ET-1 treatment.  
 n # Animals with 

Cortical Damage 
% Area Damaged 

(Mean + SD) 
% Decrease in Cell Number 

(Mean + SD) 

200 pg ET-1 3 1   10.0 + 17.3 *   20.0 + 34.6 

400 pg ET-1 5 5 48.1 + 17.8 54.0 + 5.5 

800 pg ET-1 3 3 67.5 + 10.9   58.2 + 14.4 

ANOVA p = 0.007 (% area damaged); ANOVA p = 0.068 (% decrease in cell number). *, post hoc p < 0.05 
compared to respective experimental groups.  SD, standard deviation. 

There was a trend toward a dose-dependent increase in the area of cerebral cortex 

showing cell damage from 200-800 pg ET-1.  However, for 200 pg only one of three animals 

showed evidence of damage at -3.0 mm posterior to Bregma.  It is possible that other slices in the 

200 pg samples showed damage, but we did not observe them due to our adherence to fixed 



www.manaraa.com

80 

 

coordinates for analysis.  All of the 400 pg and 800 pg treated animals showed evidence of 

cerebral cortical damage at -3.0 mm posterior to Bregma.  The respective percent area damaged 

did not clear statistically because the 400 pg samples showed wide variation, ranging from 18% 

to 63% of cortical area damaged.  The 800 pg samples showed less variation, ranging from 60%-

80% damaged area.  For all three experimental groups, the percentage decrease in cells within 

the damaged areas averaged about 50% and there was no statistical difference amongst the 

groups. 

Assessment of Cortical Histology Following ET-1 Treatment 

Histological assessment of cortical damage by poly(A) mRNA staining showed the 

heterogeneity in damage distribution.  Figure 31 shows poly(A) mRNA staining for each ET-1 

dose under both low (10X) and high (40X) power objectives.  The 100 pg group was excluded 

from poly(A) mRNA staining because this group showed no decrease in cerebral blood flow 

(Figure 29).  Figure 32 includes the single 200 pg ET-1 treated animal that displayed cortical 

damage (Figure 32 insert A) with areas of normal-looking, viable cells surrounding it (Figure 32 

insert B).  Non-ischemic control layer II cortical neurons (Figure 31 B), had the same three 

general features of poly(A) mRNA staining reported previously in Chapter 2, for hippocampal 

neurons : (1)  diffuse and relatively homogeneous poly(A) mRNA staining throughout the entire 

cytoplasm, (2) occasional small and circular intense poly(A) mRNA cytoplasmic staining that I 

previously showed were stress granules, and (3) the presence, inside the area of the nucleus, of 

several intense, roughly circular structures ranging from 0.5 – 2 μm against a weak background 

of diffuse poly(A) mRNA staining.  

As the image progresses in Figure 31, layers II and III of the cerebral cortex were most 

strongly affected.  The 200 pg sample shows decreased cell density and cell shrinkage (Figure 31 

C and D) as compared to controls (Figure 31 A and B).  The 400 pg samples showed greater 
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numbers of shrunken cells and areas devoid of cell staining.   

 

Figure 32. Histological view of the effects of ET-
1 on the cerebral cortex. Histological assessment 
using poly(A) mRNA FISH. Left column: low 
power (10X objective) photomicrographs. Right 
column: high power (40X objective) 
photomicrographs. ET-1 doses as specified to the 
left. Images of 40X are from areas marked by 
white dashed boxes indicated on respective 10X 
images. Arrows in (D) and (F) point to shrunken 
neurons identified in the text as ischemic cell 
change. Arrows in (G) point to microclots in 
capillaries. Arrows in (H) point to neurons lacking 
poly(A) mRNA nuclear staining. Scale bar in (G) 
applies to all images at 10X and scale bar in (H) 
applies to all images at 40X.

Figure 31. Photomontage of the 
cerebral cortex assessed by poly(A) 
mRNA FISH following 200 pg ET-1 
intraventricular injection.  Inset: red 
highlighted section depicts where 10X 
images were taken. Blue lines on inset 
mark the area of injection 2.8 mm 
anterior to the coronal section.  Area A 
marks area of maximal damage and 
areas B mark adjacent areas of lesser 
damage. 
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In the 800 pg samples, the damage extended into other cerebral cortical layers, and the 

areas devoid of cell staining were generally larger than the 400 pg group.  Occasionally, 

microclots were observed in which red blood cells trapped in capillaries were stained by the 

poly-T probe (Figure 31 G, arrows). 

With respect to poly(A) mRNA staining at high magnification, mRNA granules were not 

observed in any of the neurons following any dose of ET-1.  Instead, one of two general patterns 

were observed.  In the first, poly(A) mRNA staining of shrunken and distorted cells was 

reminiscent of that of controls with an apparently homogenous cytoplasm and intense nuclear 

poly(A) mRNA staining (Figure 31 F, arrows).  However, in the second poly(A) mRNA staining 

pattern, we observed in many cases that cells were devoid of nuclear poly(A) mRNA staining 

and that such cells, though distorted to some extent, were generally not shrunken (Figure 31 H, 

arrows). 

Effect of Cycloheximide On mRNA Granule Formation   

Poly(A) and HuR cytoplasmic staining were assessed in rats either pretreated or post-

treated with CHX.  Both the pretreated and post-treated groups were reperfused for 1 hr, (1hR).  

Figure 33 shows the classic example of NICs, where HuR is mostly nuclear and poly(A) reflects 

the common homogenous cytoplasmic staining that has been described previously.  In the 

vehicle treated animal, pyramidal neurons contained the yellow speckled cytoplasmic staining, 

indicating the presence of mRNA granules, as described previously.  The CHX pretreated (C-

pre) group had an appearance similar to NICs, with smooth cytoplasmic staining.  However the 

C-pre group had a more yellowish hue indicating more HuR had transported out from the 

nucleus into the cytoplasm, as compared to the NIC.  Also there were bright green round 

punctate poly(A) staining, which I have previously identified as stress granules, but no mRNA 

granules were seen.  The post-treated CHX (C-post) group, the cytoplasm is extremely granular, 
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filled with the intensely stained mRNA granules.    

NIC V-pre C-pre C-post10 m

 
Figure 33. Effects of pre and post-treatments of cycloheximide in CA3 neurons at 1hR. CHX 
given 15 mins before or after 10 mins ischemia.  Formation of mRNA granules assessed at 1hr 
brain reperfusion. (A) Merged images of pA (green) and HuR (red) double-labeling of individual 
samples as indicated. Samples are non-ischemic, sham-operated control (NIC), vehicle 
pretreated 1hR (v-pre), CHX pretreated 1h reperfused (C-pre), and CHX post-treatment 1h 
reperfused (C-post). All images are 1/3rd crops of original images. Scale bar applies to all 
images. 

From these results it was determined that CHX pretreatment inhibited poly(A) mRNA 

granules, while CHX post-treatment did not prevent mRNA granule formation.  The CHX results 

support the above model and indicate that mRNA granule formation depends on the dissociation 

of polysomes to free-up polysome-bound mRNAs.  The increase in unbound mRNA molecules 

can then serve as the substrate driving the formation of RNPs into complexes, such as the mRNA 

granules. 
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CHAPTER 5 

Discussion 

Summary of Results 

In the preceding sections, I have described my studies involving persistent TA following 

global brain I/R.  To summarize the main findings: 

 A novel discovery was made; cytoplasmic poly(A) containing mRNAs redistributed to 

form mRNA granules in reperfused neurons.  

 mRNA granules sequester mRNA away from both the small and large ribosomal 

subunits, providing a novel mechanism of prolonged TA in post-ischemic neurons.  More 

specifically, the presence of mRNA granules in post-ischemic neurons correlated 

precisely with in vivo TA.  In CA3, mRNA granules abated by 16hR, whereas mRNA 

granules persisted in selectively vulnerable CA1 neurons and remained until the cells 

underwent DND. 

 The colocalization of mRNA granules with known mRNA binding proteins PABP, eIF4G 

and HuR suggests that mRNA granules are ribonomic complexes, involved in mRNA 

regulation that may itself be related to or a subset of the ELAV/Hu granule. 

 I observed a correlation between HuR colocalized to mRNA granules and translation of 

HSP-70.  This correlation suggests mRNA granules are involved in post-transcriptional 

stress gene regulation in reperfused neurons. 

 Through further characterization of mRNA granules, I determined: (1) mRNA granules 

are not SGs, P-bodies, polysomes or any other organelle marker tested. 

 mRNA granules colocalized with NeuN in the cytoplasm. 

 mRNA granules were mechanistically linked to polysome dissociation. 

I now discuss the relation of this work, to other studies in the brain ischemia field and 
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how these findings provide new insights into the response of neurons to global brain ischemia 

injury.   

mRNA Granules and Ribonomics 

Subcellular redistribution of translational machinery or ribonomics, plays an important 

role in translation regulation in pathological circumstances (reviewed in Anderson and Kedersha, 

2006).  Because brain I/R results in a profound TA in selectively vulnerable neurons (Hossmann, 

1993), the purpose of the first study was to assess if changes in the subcellular distribution of 

mRNA and translation regulators, into mRNP complexes, contributed to prolonged TA in 

vulnerable neurons.  The second study focused on identifying the histological composition of the 

mRNA granules and further considered their intracellular properties, while the final experiments 

discussed in Chapter 4, looked to specific pharmacologic agents to induce their formation.  

Below, I discuss how the results gathered from these experiments have substantially advanced 

the understanding of post-ischemic TA. 

Subcellular Structures in Reperfused Neurons 

To date, four subcellular structures have been identified in reperfused neurons: (1) 

ubiquitin-protein clusters (ubi-protein clusters), (2) protein aggregates (PAs) (Hu et al., 2000; 

Liu et al., 2005a; Liu et al., 2005b), (3) SGs (Kayali et al., 2005; DeGracia et al.,  2007), and (4) 

aggregates of eIF4G (DeGracia et al., 2006).  The question to consider:  How do these mRNPs 

relate to mRNA granules? 

Ubi-protein clusters and PAs appear to be related as they are both marked by ubiquitin 

immunostaining in situ (Hu et al., 2000).  Ubi-protein clusters form early in reperfusion in all 

post-ischemic neurons, but are reversible in resistant neurons (Hu et al., 2000; DeGracia et al., 

2007).  In vulnerable neurons at later reperfusion, the ubiquitin immunostaining transforms to 

take the form of PAs, suggesting that the PAs somehow derive from the ubi-protein clusters 
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(DeGracia and Hu, 2007).  Under the microscope, the ubi-protein clusters are large (~2-5 

microns) irregular domains of ubiquitin staining, and the PAs are punctate ubiquitin-containing 

particles of 200-500 nm, best visualized using EM.  Thus, the particles marked by ubiquitin 

immunoreactivity persist in vulnerable neurons and become smaller as reperfusion progresses 

(Hu et al., 2000; reviewed in DeGracia and Hu, 2007).  However, the mRNA granules observed 

here became larger with reperfusion duration (Figure 11).  Additionally, PAs were shown to 

colocalize with TIA-1 at 48 hR (DeGracia et al., 2007).  However, TIA-1 did not colocalize with 

mRNA granules at any of the time points observed.  The data therefore suggests that mRNA 

granules are not the same as ubi- protein clusters, nor PAs. 

It can also be concluded that the mRNA granules are not SGs.  Again, the morphology of 

the two particles are very different: SGs form circular punctate structures, but the mRNA 

granules are instead irregular domains occupying wide areas of cytoplasm.  The mRNA granules 

lacked TIA-1 (Figure 20), the self-aggregating component of SGs (Gilks et al., 2004).  Finally, 

we could simultaneously visualize both the mRNA granules and SGs in the same neuron, 

proving their distinct identities (Figure 20). 

It was previously shown, following I/R using the CA/R model, the formation of 

aggregates of eIF4G that persisted in CA1 pyramidal neurons (DeGracia et al., 2006).  Using the 

2VO/HT model to induce ischemia, I also observed aggregates of eIF4G that precisely 

colocalized with mRNA granules (Figure 19).  The morphology of the eIF4G aggregates were 

identical in both studies, using two distinct models; this suggests that eIF4G aggregates are 

markers of mRNA granule formation.  If validated, the mRNA granules would provide a 

mechanism of prolonged TA common to both the CA/R and 2VO/HT models. 

mRNA Granules 

Although many forebrain I/R investigations have looked at changes in individual mRNAs 
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with in situ hybridization or PCR, few studies have evaluated markers of total mRNA following 

brain I/R.  In one such study, (Matsumoto et al., 1990) showed a subcellular redistribution of 

mRNA by gradient centrifugation, and concluded mRNA transport was altered following brain 

I/R.  This suggested that mRNA transport may contribute to the TA associated with selective 

vulnerability.  The observations I presented above, support this suggestion.  However, the 

Matsumoto et al. (1990) study offered no rationale underlying the change in mRNA distribution. 

The understanding of translation regulation in reperfused neurons that I have presented 

here, does provide one plausible explanation.  Phosphorylation of eIF2� occurs with the onset of 

reperfusion (Kumar et al., 2003) resulting in translation initiation inhibited, polysome 

dissociation, and resultant TA.  Focus on ribosome regulation has diverted attention from the 

issue of what happens to mRNA when polysomes dissociate.  My data suggests that the mRNA 

granules form in response to polysome dissociation, possibly to sequester, preserve and silence 

neuronal “housekeeping” mRNAs.  In this role, the mRNA granules are likely part of a 

protective mechanism, as they formed in all post-ischemic neurons. 

The translational control literature offers further insight into the potential nature of the 

mRNA granules.  A recent report showed that glucose deprivation (and not amino acid 

deprivation) in yeast, lead to a redistribution of cytoplasmic mRNAs in structures termed EGP 

granules.  EGP granules were found to contain eIF4E, eIF4G and PABP, but lacked the P-body 

markers and decapping enzymes, Dcp1p and Dcp2p (Hoyle et al., 2007).  The mRNA granules 

also colocalized with eIF4G and PABP, but not the P-body marker TTP.  Given that ischemia is 

a form of severe neuronal glucose deprivation, the mRNA granules identified here may be the 

neuronal counterpart of the yeast EGP granules.  It was suggested by Hoyle et al. (2007) that 

EGP granules may serve a function analogous to SGs, which is to route mRNAs to appropriate 

compartments within the cell (Anderson and Kedersha. 2006).  However, the colocalization of 
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HuR in the mRNA granules (Figure 23) suggests a different, but related function. 

Several laboratories have identified ELAV/Hu granules, which also are granular 

cytoplasmic mRNA formations that contain HuR or its homolog HuB (Keene, 1999).  Evidence 

suggests that the ELAV/Hu granules partition functionally related mRNAs, allowing for their 

coordinated regulation in terms of translation, silencing or degradation (Keene and Lager, 2005).  

This type of functional mRNA coordination has been observed following cell stress, in which 

well-known immediate early genes (IEGs) such as c-fos and c-myc are translated.  Many of the 

stress-induced mRNAs contain an ARE sequence (Atasoy et al., 1998; Brennan et al., 2000; 

Chen et al., 2002), including the mRNA for HSP70 (Laroia et al., 1999).  HuR, a RNA binding 

protein, has been identified by its ability to bind to ARE sequences, thus shuttling select early 

response gene mRNAs from the nucleus out to the cytosol for translation (Cherry et al., 2006).   

It is well established that many stress genes are induced following reperfusion (Nowak, 

1993; Kogure and Kato, 1993; Akins et al., 1996; Koistinaho and Hökfelt, 1997).  (Amadio et 

al., 2008), report HuR binding to HSP-70 following hydrogen peroxide induced cell stress.  

Thus, in addition to mRNA granules silencing “housekeeping” mRNAs, the correlation between 

HuR/mRNA granule colocalization and HSP70 translation suggests that the mRNA granules 

may also function to coordinate stress gene expression in the reperfused brain.  Or, in other 

words, mRNA granules may represent a morphological correlate of the selective regulation of 

stress-induced mRNAs, while normal neuronal translation is silenced. 

Differences Between CA1 and CA3 

It is well established that, following the durations of ischemia used in the 2VO/HT 

model, CA1 pyramidal neurons show a profound and irreversible TA  (Hossmann, 1993) and that 

there is either a delay in or no translation of HSP70 (Vass et al., 1988; Simon et al., 1991; 

Nowak, 1993).  It has been proposed that these are linked insofar as the TA in CA1 will preclude 
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synthesis of HSP70 (White et al., 2000).  However, it is well established that HSP70 is translated 

under conditions where general protein synthesis is inhibited (Panniers, 1994).  In fact, exclusive 

synthesis of HSPs in reperfused hippocampus has been reported (Kiessling et al., 1986).  

Additionally, induced stress proteins such as HSP70 are crucial to recovery of general translation 

(DiDomenico et al., 1982; Van Nieuwenhoven et al., 2001; Ron, 2002; Gilks et al., 2004).  

Therefore, the direction of causality is not that TA prevents HSP70 translation in CA1, but the 

reverse: delayed synthesis of HSP70 prevents translation recovery, and hence causes prolonged 

TA.  The differential behavior of the mRNA granules between CA1 and CA3 described here, 

provides a deeper level linking these two events. 

The results just presented, have lead us to ask the following questions: (1) Why is there a 

delay in HuR entering the mRNA granules in CA1?  (2) How does HuR in the mRNA granule 

facilitate HSP70 translation?  (3) By what mechanism does HSP70 protein contribute to mRNA 

granule dissipation and general translation recovery? 

HuR and mRNA Granules   

HuR exports from the nucleus following cellular stress, to effect regulation of 

cytoplasmic ARE-containing mRNAs in compartmentalized structures (Cherry et al., 2006).  The 

delayed accumulation of HuR in the mRNA granules of CA1 pyramidal neurons, could be due to 

a transportation defect in HuR.  Alternatively, there could be successful nuclear export, but some 

biochemical alteration in the cytoplasm precludes HuR from entering the mRNA granules.  

Future work needs to address these issues. 

In spite of the delay in HuR entering the mRNA granules, it is well established that there 

is copious transcription of hsp70 mRNA in both CA1 and CA3 at the duration of ischemia using 

the present model (Figure 25).  If, in CA3, the hsp70 mRNA is translated because of some 

process marked by HuR entering the mRNA granules, then what happens to hsp70 mRNA in 
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CA1 neurons?  It thus becomes essential to compare the subcellular distribution and protein 

interactions of hsp70 mRNA in CA1 and CA3 following I/R.  The results presented in Chapter 3, 

leads to the prediction that hsp70 mRNA will have differential binding partners and/or different 

subcellular localizations in CA1 as compared to CA3, occurring between 8hR - 36hR. 

Finally, there is the issue of how precisely HuR can regulate the translation of an ARE-

containing mRNA, such as hsp70.  (Antic and Keene, 1998b) showed that interaction of Hu 

granules with microtubules, and polysomes with microfilaments, was important for translation of 

mRNAs in Hu granules.  As cytoskeleton alterations occur in reperfused CA1 (Siesjö, 1994; 

Yokota et al., 1995), this provided another potential marker that could be used in IF/FISH to 

further elucidate and characterize mRNA granules.  Thus in Chapter 3, I present results from 

histochemical methods used to further assess the colocalization properties of the mRNA granules 

formed in reperfused neurons.  The results from this study determined:  (1) the mRNA granules 

present in the reperfused CA1 and CA3 neurons did not colocalize with markers of major 

intracellular organelles, cytoskeleton or HuR binding proteins, and (2) mRNA granules did 

colocalize with NeuN out in the cytoplasm. 

In spite of mRNA granules in CA3 neurons colocalizing with HuR at 1hR (Figure 23), 

there was no colocalization with the HuR accessory proteins APRIL and pp32, suggesting that 

the function of HuR in the mRNA granules may be distinct from its role in nuclear to 

cytoplasmic transport of mRNAs mediated in conjunction with APRIL and pp32 (Gallouzi et al., 

2003).  

Unexpectedly, the mRNA granules strongly colocalized with NeuN outside of the 

nucleus following brain I/R (Figure 27C).  This result is consistent with a recent study that 

identified NeuN as an mRNA splicing factor, FOX-3 (Kim et al., 2002).  The colocalization of 

NeuN and the mRNA granules suggests, NeuN may function similarly to other mRNA binding 
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proteins, such as HuR (Gorospe, 2003) or TIA-1 (Anderson and Kedersha, 2006); suggesting 

NeuN may reside in the nucleus under normal conditions, but export out into the cytoplasm 

under conditions of cell stress, in order to contribute to the genetic reprogramming to a stress 

response phenotype (DeGracia et al. 2008). 

mRNA Granules; Involved in Damage Response or Stress Response 

Since I showed that mRNA granules are very likely the mechanism of prolonged TA in 

reperfused neurons, I sought additional means to confirm the link between TA and mRNA 

granules.  The purpose of the pharmacological studies was to manipulate known triggers and see 

if they had the expected effects on mRNA granules.  ET-1 was used to lower cerebral perfusion 

to a blood flow rate known to inhibit protein synthesis.  CHX was used because it is a well-

known agent that prevents dissociation of polysomes. 

ET-1 and mRNA Granules 

Inhibition of protein synthesis has been shown to occur after blood flow reductions to 

about 0.55 ml/gm/min (Hossman 2006), which we observed at 400 pg ET-1 (Figure 29).  I 

sought to confirm whether mRNA granule formation occurred at the threshold of protein 

synthesis inhibition.  However, I did not observe mRNA granules at any ET-1 dose.  The 

histological results suggest an explanation for this apparent discrepancy.  I observed discreet 

areas of damaged cerebral cortex interspersed amongst regions showing little or no damage (e.g. 

Figure 32A), with the damaged area showing a trend of increasing as a function of ET-1 dose 

(Table 5).  Such heterogeneous damage implies that blood flow reduction was equally 

heterogeneous.  The apparent graded decrease in blood flow with ET-1 dose can be explained by 

an increasing recruitment of cortical areas with little or no blood flow, corresponding to the 

increased area of cortical damage (Table 5).  The MRI measurements would then represent 

averages of these heterogeneous blood flow patterns over the volumes used for detection.  
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Mechanistically, this would imply that ET-1 affected discreet blood vessels differentially.  Once 

a vessel became constricted by ET-1, blood flow would be reduced in that vessel, which may 

have limited the bulk flow of ET-1 throughout the vasculature. 

Thus, ET-1 proved unsuitable to generate a homogeneous graded decrease in cerebral 

blood flow, preventing the use of ET-1 as a means to assess if the blood flow threshold for the 

formation of mRNA granules was the same as that, which induces the inhibition of protein 

synthesis. 

Cycloheximide and mRNA granules 

CHX is a glutarimide antibiotic and well-known protein synthesis inhibitor.  Specifically, 

CHX prevents the release of the deacylated tRNA from the large 60S ribosome, halting 

elongation and preventing polysome disassembly (Pestka, 1971).  Thus, it was predicted that 

pretreatment of CHX would prevent mRNA granulation, whereas CHX post-treatment would 

induce their formation.  These predictions were confirmed.  That CHX pretreatment, but not 

post-treatment, inhibited the formation of mRNA granules indicates that mRNA granule 

formation requires polysome dissociation. 

A Model of Post Ischemic Stress Responses and TA 

My results can be combined with other results in the literature to develop a novel, new 

model of how stress responses are activated in reperfused neurons.  This new model in turn 

suggests new hypotheses to test for the cause of DND. 

During ischemia, there is no protein synthesis because ATP levels go to zero.  However, 

ATP returns rapidly with reperfusion.  Increased ATP is a substrate for kinases, and allow the 

alpha subunit of eIF2 to become phosphorylated, as was studied extensively by Dr. DeGracia 

(DeGracia et al 1996; 1997).  Phosphorylation of eIF2� causes polysome dissociation, 

explaining the original 1971 observation of Kleihaus and Hossmann.  I showed above that SGs 
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increase at 10 min reperfusion, and it would follow that the increase in SGs is concurrent with 

polysome dissociation because free mRNA levels will increase greatly.  Work from Kedersha 

and Anderson have shown that SGs form any condition leading to polysome dissociation 

(Anderson and Kedersha, 2002b).  However, the SG increase was very transitory, and was only 

observed at 10 min.  Therefore, it must precede the formation of the mRNA granules, which I 

observed only as early as 1 hr reperfusion.  The early formation of mRNA granules possibly 

serve to sequester existing mRNAs.  In line with the Keene idea of an mRNA operon (Mansfield 

and Keene, 2009), this might reflect the first step in genetic reprogramming; the shutting off of 

existing translation in preparation for some new set of mRNAs that will eventually be translated. 

This idea is supported by the correlation between HuR and mRNA granule 

colocalization.  This observation suggests the mRNA granules play a role in the reprogramming 

of the neuron to a stress response phenotype.  It was observed that this did not occur until ~ 36-

48 hr in CA1, suggesting that translation of HSP70 protein, by this time, is too late to help 

salvage the CA1 neuron, and it then dies, perhaps by the protein aggregate mechanism advocated 

by Dr. Hu (Hu et al., 2000). 

Therefore, this new model suggests that there is some defect in the ribonomic regulation 

in CA1 neurons that prevents it from translating HSP70 protein, in spite of the extremely large 

amount of mRNA in the CA1 neurons.  This provides a new pathway that requires investigation. 

Limitations of the Present Studies 

The following are limitations relevant to the studies presented here: 

1. The main technique used in my studies was microscopy.  Therefore, I could only 

correlate my observations with molecular changes such as TA and synthesis of HSP70.   

2. Biochemical and molecular biology of the mRNA granules was not performed. 

3. The CHX was only conducted to 1hr reperfusion and therefore, the effect on outcome of 
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inhibiting mRNA granules, or whether or not they form later than 1 hr was not studied.  

4. Intraventricular administration of ET-1 proved unsuitable for controlling cerebral blood 

flow. 

Future Directions 

My dissertation work provides many new directions for future investigation.  Some of the 

most prominent are: 

1. What is the molecular biology of the mRNA granules?  How do they form? What do 

they do after they form?  What is their composition?  Does their composition change with time? 

Questions of the molecular composition involve both protein and mRNA composition.  The 

technique RNA immunoprecipitation (IP) first IPs a specific mRNA binding protein under 

conditions that preserve the mRNA-protein interaction, and then the mRNAs can be isolated, 

amplified and analyzed in mass by microarrays.  I observed PABP, eIF4G, HuR and NeuN to 

colocalize with the mRNA granules.  Any of these could be used as the IP protein.  HuR would 

be the most informative because of its differential colocalization between CA1 and CA3.  RNA 

IP can also be used to isolate the proteins in the complex, which could be analyzed by 

proteomics.  Thus, there are many possible molecular studies waiting to be performed. 

2. What is the status of mRNA granules in other forms of ischemia?  Monique Lewis has 

shown they are also prominent following focal cerebral ischemia.  What is the status of mRNA 

granules in preconditioning, where preconditioning is first subjecting a rat to a sublethal, 2 min 

global ischemia.  After two days, if a 10 min ischemia is given to the same rat, the CA1 neurons 

do not die.  Therefore, it would be of great interest to study mRNA granules in preconditioning. 

Specifically, does HuR colocalize early (~1 hr) in CA1 after preconditioning as it does in CA3 at 

10 min of ischemia and 1 hr reperfusion? 

3.  Other methods of reducing brain blood flow can be tried to see if the mRNA granules 
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form at the same threshold as TA, as shown by Hossmann.  One such method is to use a more 

graded hypotension, as used in the 2VO/HT model, to see if blood flow can be titrated and 

graded to produce the required 50% threshold. 

4. Once the details of the mRNA granule system are identified, a long-term goal is to use 

them as targets for neuroprotection therapy.  It is possible that a drug intervention early in the 

time course of reperfusion could cause HuR to enter the mRNA granules in CA1 neurons and 

allow them to translate HSP70 protein.  How this might be carried out is unknown lacking 

knowledge of the detailed molecular biology, but it is one of the most exciting long-term 

prospects of my work in this dissertation. 

Conclusion 

In this dissertation, I have discovered a new mechanism for prolonged post-ischemic TA 

that correlated exactly with in vivo translation rates and correlated precisely with cell outcome.  

Through the extensive colocalization studies, my results indicate that the mRNA granules are 

ribonomic structures involved with mRNA regulation.  This is important because it now shifts 

the focus on mRNA metabolism and away from exclusive focus on ribosome molecular biology 

that has been the main line of work in this area.  I have identified new pathways to investigate for 

understanding why there is selective delayed death in post-ischemic neurons, however my work 

also gives insight into why resistant neurons survive.  Further study of these pathways in 

resistant neurons may offer new therapeutic targets that promote survival following brain 

ischemia. 

I conclude giving a special thanks and my appreciation to all the individuals in the field 

who have laid the foundation for my work reported here.  It is my hope that the insights and 

knowledge gained here will provide future investigators with the tools and ideas to keep 

advancing our understanding of neuronal death after brain ischemia and reperfusion.  Through 
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this ongoing process, we may one day find effective ways to stop cellular death in the brain 

following stroke and cardiac arrest.  My work here suggests we have reason to be optimistic.   
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The information presented here studies the mechanisms that underlie persistent TA 

following global brain I/R.  To summarize the main findings I have discovered a new mechanism 

for prolonged post-ischemic TA that correlated exactly with in vivo translation rates and 

correlated precisely with cell outcome.  Through the extensive colocalization studies, my results 

indicate that the mRNA granules are ribonomic structures involved with mRNA regulation.  This 

finding is significant because it shifts the focus onto mRNA metabolism and away from 

ribosomal molecular biology.  I have identified new pathways to investigate for understanding 

why there is selective delayed death in post-ischemic neurons, however my work also gives 

insight into why resistant neurons survive.  The results were tested in a whole animal (male Long 

Evans rats) model of global brain I/R using in situ antibodies and mRNA staining methods, in 

vivo protein synthesis and Western blots.  Results are collectively summarized below: 

1. Cytoplasmic poly(A) containing mRNAs redistributed to form mRNA granules in 

reperfused neurons. 

2. mRNA granules sequester mRNA away from both the small and large ribosomal 

subunits, providing a novel mechanism of prolonged TA in post-ischemic neurons.   

3. mRNA granules are ribonomic structures. 

4. mRNA granules, are neither stress granules, processing bodies, or polysomes.   

5. mRNA granules were  found to only colocalize with eIF4G, PABP and HuR, suggesting 

that mRNA granules may itself be related to or a subset of the ELAV/Hu granule. 
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6. HuR co-localized to mRNA granules and translation of HSP-70.  This correlation 

suggests mRNA granules are involved in post-transcriptional stress gene regulation in 

reperfused neurons.  

7. mRNA granules are causally linked to TA.   
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